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PREFACE

The textbook "State Space Control” is devoted to the fundamentals of the
automatic control. The main emphasis is put on the description of the principles of the
state space models and the negative feedback, and their use for the linear dynamic
system control. It deals with the most important area of the state space control of the
SISO systems.

Since the textbook discuses only fundamentals of the state space control, in the
text are not given accurate proofs. For a deeper and broader study, the following
publications are recommended:

OGATA, K. Modern Control Engineering. 5" Edition. Prentice-Hall, Boston, 2010

FRANKLIN, G.F., POWELL, J.D. , EMAMI-NAEINI, A. Feedback Control of Dynamic
Systems. 4" Edition. Prentice-Hall, Upper Saddle River, New Jersey, 2002

MANDAL, A. K. Introduction to Control Engineering. Modelling, Analysis and
Design. New Age International (P) Publishers, New Delhi, 2006

Nisg, N. S. Control Systems Engineering. 6" Edition. John Wiley and Sons,
Hoboken, New Jersey, 2011

NOSKIEVIC, P. Modelling and Simulation of Mechatronic Systems using MATLAB-
Simulink. VSB-TU Ostrava, 2013

It is assumed that students have basic knowledge of the classical automatic control
in the range of textbook, e.g.:

VITECEK, A., VITECKOVA, M. Closed-loop Control of Mechatronic Systems. VSB-
TU Ostrava, 2013

The textbook is determined for students who are interested in the automatic
control theory.
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LIST OF BASIC NOTATIONS AND SYMBOLS

a, aj, b, bi,... constants

3 coefficients of left side of differential equation, coefficients of transfer function
denominator

al desired characteristic polynomial coefficients of observer

a' vector of desired characteristic polynomial coefficients of observer

a"  desired characteristic polynomial coefficients of closed-loop control system

a"  vector of desired characteristic polynomial coefficients of closed-loop control
system

A(w) =modG(jw) = | G(jw) | frequency transfer function modulus, plot of A(w) =
magnitude response

A system (dynamics) matrix of order n [(nxn)]

Aw  system matrix of closed-loop control system of order n [(nxn)]

Al system matrix of observer of order n [(nxn)]

bi coefficients of right side of differential equation, coefficients of transfer function
nominator

b input state vector of dimension n

c output state vector of dimension n

C capacitance

d transfer constant

e control error

e(0) steady-state error

f general function

f= % frequency

g(t)  impulse response

G(s) transfer function, transform of impulse response

G(jw) = P(w)+ jQ(w) = A(w) ! frequency transfer function, plot of G(jw) =

frequency response

h(t)  step response

H(s) transform of step response

i current

j=+-1 imaginary unit

k relative discrete time (k=0, 1, 2, ...)



Ki gain

Kw coefficient of input filter, input correction

KT discrete time

Ki weight of controller integral component (term)

Kp controller gain, weight of controller proportional component (term)

k vector of state space controller
L inductance
L operator of direct Laplace transform

Lt  operator of inverse Laplace transform
L(w) = 20logA(w)  logarithmic modulus of frequency transfer function
I Luenberger observer gain vector, correction vector

m degree of polynomial in transfer function nominator, motor torque, mass

mi load torque

mL = 20log ma logarithmic gain margin

M polynomial in transfer function nominator (roots = zeros)

n degree of characteristic polynomial, degree of polynomial in transfer function

denominator, dimension of state variable vector x

N characteristic polynomial or quasipolynomial, polynomial or quasipolynomial in
transfer function denominator (roots = poles)

Nk characteristic polynomial of closed-loop control system with state controller

Niw  desired characteristic polynomial of closed-loop control system with state
controller

N characteristic polynomial of observer
Nw  desired characteristic polynomial of observer

P(w) = ReG(jw) real part of frequency transfer function
pi poles of observer
Q(w) = ImG(jw) imaginary part of frequency transfer function

Qco  controllability matrix of order n [(nxn)]

Qob  observability matrix of order n [(nxn)]

R resistance

s=a+jw  complex variable, independent variable in Laplace transform

Si poles of linear dynamic system = roots of polynomial N(s)

S zeros of linear dynamic system = roots of polynomial M(s)

desired poles of closed-loop control system with state controller

t (continuous) time



ts settling time
. .
t, = . time corresponding to phase ¢
2 .
T=2 period
w

T sampling period, period

T4 time delay (dead time)

To derivative time

Ti integral time

Ti (inertial) time constant

Te, To transformation matrices of order n [(nxn)]

u manipulated variable, control variable, input variable (input), voltage
ur formed (stair case) manipulated variable

Vv disturbance variable (disturbance)

W desired (reference, command) variable, set-point value

X state variable (state)

X state vector (state) of dimension n

y controlled (plant, process) variable, output variable (output)
Yw response caused by desired variable

yT transient part of response

Ys steady-state part of response

VA impedance

a stability degree (absolute damping)
a=Res real part of the complex variable s
ot)  unit Dirac impulse

A difference

€ state error vector

n(t)  unit Heaviside step

w = 2xf angular frequency, angular speed
w=1Ims imaginary part of complex variable s
o natural angular frequency

o(w) = arg G(jw) phase of frequency transfer function, plot of ¢(w) = phase
response

& relative damping



K overshoot
Tj time constant

Upper indices

* recommended, optimal
-1 inverse
T transpose

Lower indices
c controller, control
co controllability
d diagonal
D discrete
0 observer, observation
ob observability
w desired
t transformed, transformation
Symbols over letters
(total) derivative with respect to time
A estimation
Relation signs

Q

approximately equal

after rounding equal

correspondence between original and transform
implication

equivalence

raphic marks

Qg U

single zero
double zero
single pole

double pole
|

XX 0©0

nonlinear system (element)

linear system (element)
— single variable (signal)

— multiple variable (signal)



e

Shortcuts

arg  argument
dB  decibel
const constant

dec  decade

det  determinant
dim  dimension
Im imaginary, imaginary part
lim  limit

max maximum
min  minimum
mod  modulus

Re real, real part

sign

signum

summing node (filled segment expresses

minus sign)
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1 INTRODUCTION

Conventional controllers P, I, PD, Pl and PID have a simple structure and when
appropriately tuned they are able to ensure for common controlled systems (plants) a
relatively good quality of control processes. Their advantage is a low cost, an easy
implementation and a simple tuning that do not require deep theoretical knowledge. A
properly designed and tuned conventional controller is able to ensure both following of
changes in the desired variable, and enough suppressing negative influence of
disturbances. A conventional control is also robust because it is able to ensure the
required control quality for given changes in properties of controlled systems.

In some cases, the use of conventional controllers cannot guarantee the required
control quality. It is especially in the case of unstable and complex controlled systems
and for high requirements for control quality. In this case it is advisable to use state
space control. Its birth and development is associated with an aeronautics and
astronautics. In the state space control theory, the general concepts of the system theory
are used.

The state space control removes some disadvantages of the conventional control,
it allows significantly increase the control quality, but it requires some theoretical
knowledge.

In textbook, there are only given basic approaches and methods used in the
analysis and synthesis of SISO continuous feedback control systems in the state space.
The text is arranged in a way, that allows easy extension to discrete and MIMO control
systems.
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2 MATHEMATICAL MODELS OF DYNAMIC SYSTEMS

2.1 General mathematical models

For the design and study of the properties of systems we use their mathematical
models. It is very advantageous because experimentation with real systems may be
substituted by experimentation with their mathematical models, i.e. by simulation. It
enables considerable reductions in cost and risk of damage to the real system. It is also
important for accelerating the whole process. New nontraditional solutions often arise.

In automatic control theory in the time domain, mathematical models have forms
which are algebraic, transcendental, differential, partial differential, integral, difference,
summation equations and their combinations. The mathematical model can be obtained
by identification using an analytical or experimental method, if necessary by a
combination of them. For example, a mathematical model can be obtained analytically
and its parameters can be refined experimentally. Sometimes term identification means
finding a mathematical model using an experimental method. We will only deal with
such mathematical models that can be expressed in the forms of the t-invariant
(stationary) ordinary differential equations, which describe real systems with lumped
parameters.

When evaluating a mathematical model and the simulation results we must always
remember that every mathematical model is only an approximation of the real system.

Since even a very complex MIMO (multi-input multi-output) system is formed by
combining SISO (single-input single-output) systems, main attention will be paid to
SISO systems.

Consider the SISO system which is described by the generally nonlinear
differential equation

gLy (@),..., y(t), y(©),u™(),...,u(t),u(t)] =0. (2.12)
y(t) = dﬁt) O =AY, dyft) =23,
(2.1b)
00=20, 0080, o5
with initial conditions
— v — (n-1) — y(n-D)
¥(0) =0, ¥(0)=Yo..... Y 7 (0)=Yy5 ", (2.1¢)
u(0) = u,,u(0) =d,...,u™>(0) =ul"?,

where u(t) is the input variable (signal) = input, y(t) — the output variable (signal) =
output, g — the generally nonlinear function, n — the system order.

If the inequality
n>m (2.2)
holds, then the mathematical model satisfies a strong physical realizability condition.
In case
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n=m (2.3)
it satisfies only a weak physical realizability condition.
For
n<m (2.4)

the mathematical model is not physically realizable and therefore it does not express
the behaviour of the real system.

The mathematical model (2.1a), in which the derivatives appear (2.1b), describes
the dynamic (dynamical) system (it has a memory).

From the differential equation (2.1a) for
lim yOt)=0; i=12,...,n,
imu?(t)=0; j=12,...,m
t—o0

it is possible to obtain the equation (if it exists)

y=f(u), (2.5)
where
y = lim y(t), }
o (2.6)
u :tlmu(t).

The equation (2.5) expresses the static characteristic of the given dynamic
system (2.1), see e.g. Fig. 2.1.

Ya
y="f(u)
bof
G I
17 of 1 0
‘ _by
Ch

Fig. 2.1 Nonlinear static characteristic — Example 2.1

A static characteristic describes the dependency between output y and input u
variables in a steady-state.

If derivatives do not appear in Equation (2.1a), i.e.,
gly(),u®]=0 or g(y,u)=0, (2.7)
then it is the mathematical model of the static system (it has no memory).
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State space mathematical models of a dynamic system are very important. They
are used for describing both SISO and MIMO systems.

The state space model of the SISO dynamic system has the form

X(t) = g[x(t),u(t)], x(0)=x, - stateequation (2.8a)
y(t) = h[x(t),u(t)] — output equation (2.8b)
%
X = x:2 =X, X0 X0 1T
x
K
9= gf =[01,92- ]
L 9n

where x(t) is the state vector (state) of the dimension n, g — the generally nonlinear
function of the dimension n, h — the generally nonlinear function, T — the transposition
symbol.

We often omit the independent variable time t in order to simplify a description.

The components Xz, X2, ..., Xa Of the state x express the inner variables.
Knowledge of them is very important for state space control (see Chapter 4).

The system order n is given by the number of state variables. If in the output
equation the input u(t) does not appear then the given dynamic system (2.8) is strongly
physically realizable. In other cases, it is only weakly physically realizable.

The static characteristic (if it exists) from the state space model (2.8) can be
obtained for t — oo = X(t) >0 and by the elimination of the state variables (see

Example 2.1).

Example 2.1

The nonlinear dynamic system is described by the differential equation of the
second order

2
2, 8V, , 40
dt dt

with initial conditions y(0) =y,a y(0)=y,.

+a,Y(t) = by sign [u(t)]u(t)|, (2.9)

It is necessary to:
a) determine the physically realizability,
b) determine and plot the static characteristic,
c) express the mathematical model (2.9) in the form of the state space model.
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Solution:

a) Therefore n=2>m =0 [on the right side of the differential equation the
derivative of u(t) does not appear], the given dynamic system is strongly physically
realizable.

b) In the steady-state for t — oo the derivatives in the equation (2.9) are zeros, and
therefore in accordance with (2.6) we can write

a,y =D, sign (u)\/ﬂ =
b, .
y= a—03|gn (u)\/ﬂ.
0

The obtained static characteristic is shown in Fig. 2.1.
c) If we choose the state variables, e.g.

Xl = yi
X, =% =Y,
then after substitution in the equation (2.9) and modification we get
X =Xy, % (0) = Yo,
) a a by . :
X, :——Oxl——1x2+—03|gn(u)\/ﬂ, X, (0) = Y.
a a, a,

The static characteristic can be obtained for the steady-state, i.e. t >0 =
X (t) >0, %,(t) > 0 and after elimination of the state variables

0=x,
a a by .
0=—"2x ——Lx, +—2sign( u)./|u =
azl az2 azg()\/ﬂ
y=X

b, .
y= a—05|gn( u)\/ﬂ .
0

2.2 Linear dynamic models

Linear mathematical models create a very important group of mathematical
models of dynamic systems. These mathematical models must satisfy the condition of
the linearity which consists of two partial properties: additivity and homogeneity.
Additivity

u, — system — vy,

}:>u1+u2 —>system >y, +Y,. (2.10a)
u, —system -y,

Homogeneity:
u —system — y = au —system —ay. (2.10b)
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These partial properties may be joined

u, — system — vy,

= a,u, +a,u, — system - a,y, +a,V,, 2.11
u2—>system—>y2} 41U, +3a,U, yS Y1 T35y, ( )

where a, aj, a2 are any constants; u(t), uz(t) and uz(t) — the input variables (inputs); y(t),
y1(t) and y2(t) — the output variables (outputs).

The linearity of a dynamic system has such a property when the weighted sum
of output variables corresponds to the weighting sum of input variables.

A very important property of linear dynamic systems is: every local property they
have is at the same time their global property.
Example 2.2
The static system is described by the linear algebraic equation
y(®) =ku(t) + Yo, (212)
where ki and yo are constants.
It is necessary to verify whether the mathematical model (2.12) is linear.

Solution:
We choose, e.g. ui(t) = 2 and ux(t) = 4t.
After adding in (2.12) we obtain

u(t)=2... yi(t)=2k +Yo

UZ(t)=4t...y2(t)=4k1t+y0}:>yl()+y2() L@+ 2t) + 2y,

ut)=u, (t) +u,(t)=201+2t)...y =2k 1+ 2t) + y, = Y, (1) + Y, (t) =
=2k, (1+2t) + 2y,.
We can see that for yo # 0 the mathematical model (2.12) from the point of view

of the linearity definition (2.10) or (2.11) is not linear. The mathematical model (2.12)
of a static system will be linear only for yo = 0, see Fig. 2.2.

a) Yo #0 b)
u(t t
u(t) y(t) (t) ” y()
—> K —> 1 '
y 4 y=k1U+y0 y4 y:klu

/Aa =arctgk,
y} a =arctgk;

/ 5 T 5 u:

Fig. 2.2 Mathematical model of a static system: a) nonlinear, b) linear — Example 2.2
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From the above it is clear that the static characteristic of linear systems (if it
exists) must always pass through the origin of coordinates.

Example 2.3
The dynamic system (integrator) is described by the linear differential equation

Ok, y0 =y, (2.13)

or the equivalent integral equation
y(t) = kllu(r)dr+ Yo - (2.14)
It is necessary to verify the linearity of the given mathematical model.
Solution:

We choose the same inputs as in Example 2.2 and we obtain

ut)=2... y(t)=2kt+y,

=y, (t) + Y, (t) = 2kt (1 +1) + 2y,,
Uz(t)=4t...y2(t)=2klt2+y0} ya(t) + ¥, (1) tA+1)+2y,

u(t) =u, (t) +u,(t) =21+ 2t)...y =2k t(@+t) + y, = v, (1) + v, (t) =
=2k t(1+t)+2y,.

We can see again that the mathematical model (2.13) or (2.14) for yo # 0 does not
satisfy the condition of the linearity (Fig. 2.3).

a) Yo #0 b)
uo l o Oee?

—[j@ide O

Fig. 2.3 Mathematical model of integrator: a) nonlinear, b) linear — Example 2.3

This particular conclusion can be generalized. For linear mathematical models
we must always consider zero initial conditions. Otherwise, we cannot work with them
as with mathematical models satisfying the conditions of linearity.

2.3 Basic linear mathematical models

The SISO linear dynamic system in the time domain is very often described by a
linear differential equation with constant coefficients (we will consider only such
systems)

2,y ™ () +---+a,y(t) + 2y (t) = b,u™ (£) +---+ bu(t) + bou(t) (2.158)

with the initial condition
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_ . . (n-1) _ y(n-1)
Y(0) = Y5, Y(0) = You-- YOO (0) = ¥ } (2.15b)

u(0) = U,,u(0) = Uy, ...,u™ () = ui"?

The conditions of physical realizability are given by the relations (2.2) — (2.4).

When applying the Laplace transform to the differential equation of the n-th order
(2.15a) with initial conditions (2.15b) we obtain the algebraic equation of the n-th
degree

(@,s"+---+as+ay)Y(s)—L(s) =(b,s" +---+bs+by)U (s)— R(s)
and from it we can determine the output variable transform

V)= MOy 4 HEZRE)

N(s) N(s)

transformof response  transformof response
toinput toinitialconditions

: (2.16)

transformof solutionof differential equation
M(s)=h s"+---+bs+b, =b, (s—5)(s—59)...(s =), (2.17)
N(s)=a,s"+---+as5+a, =a,(5—5)(5—5,)...(s—5S,) . (2.18)

where Y(s) is the transform of the output variable y(t), U(s) — the transform of the input
variable u(t), L(s) — the polynomial of the max degree n — 1 which is determined by the
initial conditions of the left side of the differential equation, R(s) — the polynomial of
the max degree m — 1 which is determined by the initial conditions of the right side of
the differential equation, M(s) — the polynomial of the degree m which is determined by
the coefficients of the right side of the differential equation, N(s) — the characteristic
polynomial of the degree n which is determined by the coefficients of the left side of
the differential equation, s — the complex variable (dimension time™?) [s7].

Since differential equation (2.15) is the mathematical model of the dynamic
system it is obvious that the polynomial N(s) is also at the same time the characteristic
polynomial of this dynamic system.

Using the inverse Laplace transform on the transform of the solution (2.16) we
obtain the original of the solution

y) =Ly (5)}. (2.19)
It is very advantageous to use appropriate Laplace transform tables.

From the relation (2.16) it follows that the relation can be used as the linear
mathematical model of the given linear dynamic system if the transform of the response
at the initial conditions is zero (i.e. the initial conditions are zero), see the conditions of
the linearity (2.10) or (2.11). In this case we can write

M (s)

YO =N

U(s) =G(s)U(s), (2.20)
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G(s)= 1) _M() _
U(s) N(s)
_bys"+-4bs+by by (s—8))(5—S3)...(S—Sp)

as"+---+as+a, a,(s—8)(s-8,)...(s-s,)

(2.21)

where G(s) is the transfer function, si — the poles of the linear dynamic system = the
roots of the characteristic polynomial N(s), s‘j)— the zeros of the linear dynamic system

= the roots of the polynomial M(s). The difference n — m is called the relative degree of
the given system.

The transfer function G(s) is given by the ratio of the transform of the output
variable Y(s) and of the transform of the input variable U(s) for zero initial
conditions. It can be obtained directly from the differential equation (2.15a), because
the transforms of the derivatives of the output y(t) and the input u(t) variables for zero
initial conditions are given by the simple formulas

L{y(i)(t)}: s'Y(s); i=12,...,n, }

2.22
LD @)}=su(s); j=12,....,m. (2:22)

The great advantage of the transfer function G(s) is the fact that it allows to
express the properties of the linear dynamic system in the complex variable domain by a
block as in Fig. 2.4.

SEXEG)

Fig. 2.4 Block diagram of the dynamic system
As it will be shown, it is very simple and effective to work with such blocks.

We can get the static characteristic of the linear dynamic system (if it exists) from
the differential equation (2.15a) for

lim y©@©)=0; i=12...,n,

. (2.23)
lim ut)=0; j=12,...,m,
e.g.
y=ku, (2.243)
klzb—O, a,#0, (2.24b)

a9
where ki is the system (plant) gain.

From comparison (2.21), (2.23) and (2.24) a very important relationship between
the time t and the complex variable s follows

t—>w < s—0. (2.25)

It is clear that on the basis of the relation (2.25) we get the equation of the static
characteristic (2.24) from the transfer function (2.21), and therefore it is possible to
write
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y= [IirrE)G(s)]u, a,#0. (2.26)
S
A
y y =ku
k, = b—° a,#0

bo |---- 8y

L a=arctgk
O ao u'

Fig. 2.5 Static characteristic of linear dynamic system

The static characteristic of the linear dynamic system is a straight line which
always crosses through the origin of the coordinates (Fig. 2.5).

By substituting complex frequency jeo for the complex variable s in the transfer
function (2.21) we obtain the frequency transfer function

_b,(®)"+---+Db jo+by,

G({jo)=G();, =" 7 : = A(w)e’”, (2.27)
e a (o) +--+a jo+a,

A(w) =mod G(jw) =|G(j)|, (2.28)

p(w)=argG(jw), (2.29)

where A(w) is the modulus (amplitude, magnitude) of the frequency transfer function,
o(w) — the argument or phase of the frequency transfer function, @ — the angular
frequency (pulsation) (dimension time™) [s™].

In order to distinguish angular frequency (T — the period, f — the frequency)

2
=== 2.30
T (2.30)
from ,,ordinary* frequency
1
f== 231
T (2.31)

with the unit [Hz] and the dimension [s?] for the angular frequency the notation
[rad 5] is used.

The mapping of the frequency transfer function G(jw) for @ =0 t0 @ = in the
complex plane is called the frequency response (polar plot) (Fig. 2.6).
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a)

b)

L(w) 1
[dB]
40 4

Fig. 2.6 Frequency response

accurate

20

approximate

01 1

-20

P()
[rad] 4

zl2—

10 100 1000\ T o[rads?]

T
01 1

-2

Fig. 2.7 Logarithmic frequency responses: a) Bode magnitude plot, b) Bode phase plot

Logarithmic frequency responses (Bode frequency responses) are most
commonly used, see Fig. 2.7. In this case the Bode magnitude plot
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L(w) = 20log A(w) (2.32)

and the Bode phase plot ¢(w) are represented separately. The frequency axis has a
logarithmic scale and the logarithmic modulus L(w) is given in dB (decibels). For the
Bode plots approximations are used on the basis of straight and asymptotic lines.

The frequency transfer function G(jw) expresses for each value of the angular
frequency o the amplitude (modulus, magnitude) A(w) and the phase (argument) ¢(w)
of the steady-state sinusoidal response y(t) caused by the sinusoidal input u(t) with the
unit amplitude.

That means the frequency response can be obtained experimentally (Fig. 2.8). It
has great significance especially for fast systems.

u(t) =sin @t| | inear dynamic y(t) = A(@)sin[ at + ()]

—
system >
2
u(t)4 YO+ o) = Tt =at,
1
A(w)
0 \f 0 / \Vt
> g t: 27 >
2 FT=—
T = —7[ )

Fig. 2.8 Interpretation of frequency response

The conditions of the physical realizability are given by the relations (2.2) — (2.4).
It is obvious that every real dynamic system cannot transfer a signal with an infinitely
high angular frequency, therefore for strongly physically realizable dynamic systems
there must be held the condition

lim G(je) =0

W—>0

lim A(w)=0 S n>m. (2.33)

W—>0

lim L(@) =—oo

W—>0

From the frequency transfer function (2.27) we can very easily get the equation of
the static characteristic (if it exists) because for the steady-state «w = 0 therefore it must
hold

y=[lim GGo)lu, a *0. (2.34)

It follows from (2.25) for s = jw
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t—>w < w—>0. (2.35)

It is clear that between the time t and the angular frequency w the dual
relationship holds (Fig. 2.9)

t—>0 < vo—>wx. (2.36)

A( O))A
y(®t

to0os=sw—>0

"

(> P o
'\—)0@@—)@

Fig. 2.9 Relationship between the time t and the angular frequency w

From the relations (2.35), (2.36) and Fig. 2.9 it follows that the properties of the
linear dynamic system for low angular frequencies decide about its properties in long
periods, i.e. in the steady-states and vice versa. Similarly its properties for high angular
frequencies decide about its properties for the initial time response, i.e. about the rise
time of the time response (about the transient state) and vice versa.

Properties of linear dynamic systems with zero initial conditions can be expressed
by time responses caused by the well-defined courses of an input variable.

In automatic control theory, there are two basic courses of input variable u(t), they
are the unit Dirac impulse 4(t) and unit Heaviside step #(t).

The impulse response g(t) describes the response of the linear dynamic system on
the input variable in the form of the Dirac impulse d(t) for zero initial condition, see Fig.
2.10.

In accordance with the relation (2.20) we can write
Y (s) =G(s)U (s) (2.37)
and for
ut)=o@)=U(s)=1

we get

y(t) = g(t) = L {G(s)}. (2.38)
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ut)=5(t) | Linear dynamic y®) =g(t)
’ system >
u(t)t Dirac impulse y(t) Impulse response
14 u(t) = 5t) y(®) =9(t) =L{G(s)}
> \ >
0 t ol \ t
[g(t)dt=h(x)
0

Fig. 2.10 Impulse response of the linear dynamic system
In the linear dynamic system a derivative or an integrating of the input variable
u(t) corresponds to a derivative or an integrating of the output variable y(t).

We will use these properties for the determination of the static characteristic of
the linear dynamic system on the basis of its impulse response g(t). Since the static
characteristic of the linear dynamic system is a straight line crossing through the origin
of the coordinates it is enough to determine its one non-zero point. We can write

u :u(oo):tIiLn .t[5(r)dr=1,

t
y=y(w)=lim [g(z)dr.
0
From this we can easily get the equation of the static characteristic (if it exists)
t
y=[lim [g(z)d]u. (2.39)
—w

The strong condition of the physical realizability has the form
|g(0)| <o, (2.40)
If g(0) contains the Dirac impulse 4(t), then the given linear dynamic system is
only weakly physically realizable.

The step response h(t) describes the response of the linear dynamic system on the
input variable in the form of the Heaviside step #(t) for zero initial condition, see Fig.
2.11.

On the basis of the relation (2.37) for

u(t) =n(t)eU<s)=§
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u() =7(t) | Linear dynamic | Y®=n®
system >

Heaviside step Step response
u(t YRyt =h() = L{@}
G I y(t) =ht) .
1 h(0)
0 T 0 ¢

Fig. 2.11 Step response of the linear dynamic system

we get
y(t) = h(t) = L{@} (2.41)

From the step response h(t) the equation of the static characteristic may be very
easily obtained (if it exists) because the relations hold

u=u(x) =7(x0) =1,

y = Yy() =h(c),
i.e.
y =[lm h(t)]u. (2.42)
The strong condition of the physical realizability has the form
h(0) =0 (2.43)
and the weak condition
0<|h(0)| < o0. (2.44)

It is useful to apply the generalized derivative which is defined by the relations
(Fig. 2.12)

W0 =5 O+ hst—1),
i=l
h, = Im x(¢) — m x(¢),

(2.45)

where t; are the points of discontinuity with the jumps hi, X, (t) — the ordinary
derivative determined between the points of discontinuity.
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X(t)

Fig. 2.12 Function x(t) with points of discontinuity

By means of the generalized derivative it is possible to express the relationship
between the Dirac impulse and the Heaviside step

5(t)=% o 77(t)=i'5(f)dr (2.46)
and between the impulse and step responses

00="1" & h(t)=ig(r)dr, 2.47)

G(5) =sH(5) & M=, (2.48)

From all mathematical models of the linear dynamic systems the state space
model is the most general

X(t) = AX(t) +bu(t), x(0)=x, -— state equation (2.49a)

y(t) = cTx(t) +du(t) — output equation (2.49b)

where A is the square system (dynamics) matrix of the order n [(nxn)], b — the vector of
the input of the dimension n, ¢ — the vector of the output of the dimension n, d — the
transfer constant, T — the transposition symbol.

The block diagram of the state space model of the linear dynamic system (3.35) is
in Fig. 2.13.

For d = 0 the state space model (2.49) satisfies the strong condition of the physical
realizability and for d # 0 satisfies only the weak condition of physical realizability.
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Xo
u(t) X() lxa) y(t)
> b [(9)d7 =i ¢ R
A
> d

Fig. 2.13 Block diagram of the state space model of the linear dynamic system

If the state space model (2.49) satisfies the controllability condition (see
Appendix C)

Q. (Ab)=[b,Ab,...,A"'b], detQ,(Ab)=0 (2.50)
and the observability condition (see Appendix C)

Q,,(Ac’) = ) =[c,Ac,...,(A")""c]", detQ,(Ac")=0, (251)

_CT An—l_

then for zero initial conditions [x(0) = xo = 0] we can get the transfer function on the
basis of the Laplace transform

sX(s) = AX(s)+bU(s)
Y(s)=c" X (s)+dU(s) } -

G(s) _YE) (sl —A)'b+d, (2.52)
U (s)
where det is the determinant, | — the unit matrix, Qco — the controllability matrix of

order n [(nxn)], Qob — the observability matrix of order n [(nxn)].

From the transfer function (2.52) on the basis of (2.26) we can obtain the equation
of the static characteristic (if it exists)

y= !imo[cT (sl —A)b+d]u. (2.53)

It is preferable for getting the transfer function to use the relation

Y(s) det(s] — A+bc")—det(sl — A)

G(s) = .
(s) det(sI — A)

+d, (2.54)

which does not demand the inversion of the functional matrix.

Transfer function (2.52) or (2.54) are determined on the basis of the state space
model (2.49) uniquely. In contrast to the transfer function
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Y(s) bps"+...+bs+byg
Us) as"+...+as+a

G(s) = (2.55a)

the state space model can have many (theoretically infinitely many) different forms. For
example, for n = m the transfer function (2.55a) can be written down in the form
Y(s) by, b, 8" +...+ s+,

G(s)=—-= =
®) U(s) a, s"+a,,s"'+...+as+a,

b, ,s" +...+bs+b,
N(s)

—d+ , (2.55h)

N(s)=det(sl —A)=s"+a, 8" +...+a,5+4,. (2.55c)

It is important that the transfer function (2.55) for d = 0 has not been possible to
simplify by the compensation (cancellation), i.e. the transfer function must be
irreducible. In this case we say that the mathematical model has a minimal form.
Minimal form also state models have derived therefrom. It is obvious that controllable
and observable linear dynamic systems have a minimal form.

From the above mentioned mathematical models the state space model is the most
general. Assuming controllability and observability [see relations (2.50) and (2.51)]
and, of course, zero initial conditions, all these mathematical models of the linear
dynamical systems, i.e., linear differential equations, transfer functions, frequency
transfer functions, impulse responses, step responses and linear state space models are
equivalent and mutually transferable.

Example 2.4
The linear dynamic system is described by the state model
X =Xy,
X, =—2X, +U, (2.56)
y =2X,.

Assuming zero initial conditions, it is necessary to determine: a) the transfer
function, b) the frequency transfer function, c) the impulse response, d) the step
response.

Solution:

First, it is necessary to verify the controllability and observability of the given
system. In accordance with (2.49) and (2.56) we can write

A:{O 1}, bzm, ¢' =[2,0], d=0.
0 -2 1

Controllability (2.50)
QCO(A,b)z[b,Ab]zﬁ _12} detQ,(Ab)=120 =

The linear dynamic system (2.56) is controllable.
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Observability (2.51)
c’ 2 0
T T

The linear dynamic system (2.56) is observable.

a) Transfer function
On the basis of the relation (2.52) we can write

_adjsl-A) 1 |s+2 1
Cdet(sl—A) s(s+2)| 0 s/

T a1 s+2 110} 2
G =c (s =A) b_s(s+2)[2’o]{ 0 s}m_s(su)'

(sl -A)™

If we use the relation (2.54) we do not need to invert the matrix, i.e. we can write

-1
det(sl — A) = det[S } =s(s+2),
0 s+2

™ s -1 0 T e o
det(sl — A+bc )—det{{o S+2}+{J[2,O]}—det{2 SJrz}_s(s+2)+2,

Y(s) det(sl —A+bc")—det(sl —A) 2
Ues) det(sl — A) T s(s+2)

We see that we have obtained identical results and that the transfer function has a
minimal form.

G(s)=

b) Frequency transfer function
In accordance with the relation (2.27) we can write directly
2 2 . 4

G(@) =G(),, = jo(o+2) o +4_J60(602 +4)

The frequency response is shown in Fig. 2.14a.

c¢) Impulse response
On the basis of the relation (2.38) we get

-1 1 2 1 a2t
g(t)=L*{G(s)}=L {s(s+2)}_1 e,

The impulse response is shown in Fig. 2.14b.

d) Step response
On the basis of the relation (2.41) we get

IEICION SIS S G YA
h(t)_L{ - }_L{ }_t+2(e 1).

s?(s+2)
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The step response is shown in Fig. 2.14c.

We will verify yet a connection between the impulse and the step responses on the
basis of the relations (2.47) and (2.48), i.e.

_M_i 1 o _1_a2
90 = —dt{t+2(e 1)} 1-e™®,

h(t) =}g(r)dr :}(l—e‘z’)dr St e )=ty (e 2o 1)
! ! 2 2

We see that the relations (2.47) and (2.48) really hold.

Im 4 gty h(th
11 i
®—> 0 i :
! [ ! 1 [ | >
a1 /1o Re O 1t O 1t
11
w—>

Fig. 2.14 Responses: a) frequency, b) impulse, c) step — Example 2.4

Example 2.5
The transfer function of a conventional PI controller is given by
U(s) 1
G.(s)=—==K, +K, =, 2.57
S =F g =Ko K (257)

where U(s) is the transform of the manipulated variable, E(S) — the transform of the
control error, Kp — the weight of the proportional component, K; — the weight of the
integral component. The transfer function of the PI controller should be expressed in the
form of a state model.

Solution:

The transfer function of the PI controller we express in the time domain in the
form of the integral-differential equation

t
u(t) = Kpe(t)+ K, fe(r)dr.
0
If we choose as the state variable
t
X(t) = .[e(z') dr,
0

then we can write

X(t) = e(t),

u(t) = K, x(t) + Kpe(t). (2.58)
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We obtained the simple state model of the PI controller, see Fig. 2.15.

e X u
j » K,

v
)
o

Fig. 2.15 State model of PI controller — Example 2.5
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3 STATE MODELS OF LINEAR DYNAMIC SYSTEMS

3.1 Asymptotic stability

The stability of the linear dynamic systems is their most important property. It
must be understood as the ability of the dynamic systems to stabilize all variables on the
finite values, if all input variables are fixed at finite values.

Consider a linear dynamic system described by the state model [see (2.49)]
X(t) = AX(t) +bu(t), x(0)=x,, (3.1a8)

y(t) =c x(t) +du(t). (3.1b)

Because the output equation (3.1b) is algebraic (static) the stability is determined
by the state (dynamic) equation (3.1a).

The necessary and sufficient condition for the asymptotic stability of the linear
dynamic system (3.1) is that the roots s, Sz, ..., sn Of its characteristic polynomial [see
(2.55)]

N(s) =det(sl —A)=s"+a, ;s" " +...+as+a, =

3.2)
=(s-5)(5—5,)...(s-s,)
have a negative real part, i.e.
Res, <0 for i=1,2,...,n. (3.3)

It is clear that the roots si, So, ..., Sn are simultaneously the poles of the given
system (3.1) [see (2.55)] and also eigenvalues of the matrix A.

For the asymptotically stable linear dynamic system a static characteristic must
exist.

To verify the asymptotic stability of the linear dynamic system with the state
model (3.1) any criterion based on the characteristic polynomial (3.2) can be applied.
Example 3.1

It is necessary to verify the asymptotic stability of the linear dynamic system
(2.56) from the Example 2.4.

Solution:
In the Example 2.4 has been determined the characteristic polynomial
N(s)=s(s+2) = 5,=0, s, =-2.

Because one pole is zero it is clear that the linear dynamic system is not
asymptotically stable. From the viewpoint of the linear theory, the given dynamic
system is on the stability boundary and from the viewpoint of the Lyapunov theory it is
stable.

Example 3.2

The mathematical model of the DC motor with a constant separate excitation
(furthermore, we will use “DC motor”) is shown in Fig. 3.1, where means: Jn — the total
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moment of inertia reduced in the motor shaft [kg m?], ia(t) — the armature current [A],
Ua(t) — the armature voltage [V], Ra — the total resistance of the armature circuit [Q], La
— the total inductance of the armature circuit [H], bm — the coefficient of viscous friction
[N-m-s-rad™], m(t) — the motor torque [N m], mi(t) — the load torque [N m], a(t) — the
angle of the motor shaft [rad], w(t) — the angular velocity of the motor shaft [rad-s™], cm
— the motor constant [N-m-A™Y], ce — the motor constant [V-s-rad™], ue(t) — the induced
voltage [V], @ — the constant magnetic flux of the excitation [Wh].

It is necessary to derive a DC motor state model assuming that the output
variables are the angle «(t) and angular velocity w(t). In the state model with output w(t)
it is required to verify the asymptotic stability.

Fig. 3.1 Simplified scheme of the DC motor — Example 3.2

Solution:
In accordance with Fig. 3.1, we can write:

da(t)
PTS = o(t),
3,228 b0 = m©)-m 0,
M(t) = Gy (1), (3.4)
di® o
La dt +Rala(t)_ua(t) Ue(t),
U, (t) = c,o(t).

We can get the state model of the DC motor with separate excitation from the
equations (3.4), i.e.
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) - o,

do(t) _ b, Coiopy_ L

ST 3 o(t) + 3. I, (t) 3 m, (t), (3:5)
dia(t) __C_e _&' i

T o(t) C i, (t)+ ™ u, (t).

The system of the equations (3.5) we write in the matrix form

de®)| 1o 1 o0
dt [a(t) 0 0
40O 1 1o “B S ) oy 4] 0 -] 2 m . (3.6)
dt 33| J.
M C, Ra _Ia(t) L_ 0
S

The state model (3.6) [or (3.5)] applies to the output a(t). Without the first
equation in (3.5) we get the state model for the output w(t)

d o(t) by cn o . .
dt || I, I, | el

d ia(t) B _ C_e _ & La(t)j| + {Li}ua(t) - Jom m, (t) . (37)
dt L, R a

For powers at a steady state the equality holds, i.e.
Ul, =M@ = C,l, =C i, = C,=C,,.

It is necessary to verify the asymptotic stability of the DC motor with the state
model (3.7), and therefore we can write (Ce = Cm)

L
‘]m ‘Jm
A e R
La La
S+?_m _j_m b R c2
N,(9) = detsl )= 0 :(H_mj(ﬁ_a} 0
Cn g Ma Jn L, ) J.L.
Lﬁ La
2
_s2y Bn  Relo Co bRy Res, <0, Res, <0. (3.8)
L, J L

Because the characteristic polynomial of the second degree has the positive
coefficients, therefore based on necessary and sufficient Stodola‘s stability conditions,
the linear dynamic system representing the DC motor, for the output shaft angular
velocity w(t) is asymptotically stable.



34

It is easy to show that for the output angular shaft velocity a(t) the linear dynamic
system (3.6) will have the characteristic polynomial

2
N, (s)=s| s’ + Do\ Ry gy ot Rby =sN,(s)=
L J L,

m a

3.9)
=5, =0,Res, <0,Res, <0.

In this case, the DC motor with a constant separate excitation is not

asymptotically stable. Similarly as in Example 3.1, from the viewpoint of the linear

theory the given linear dynamic system is on the stability boundary and from the
viewpoint of the Lyapunov theory it is stable.

3.2 Controllability and observability

Mathematical models in the form of the transfer function, the frequency transfer
function, the impulse response and the step response describe uniquely the behaviour of
the controllable and observable linear dynamic system with zero initial conditions (for

more details see Appendix C).
For the state model
X(t) = Ax(t) + bu(t),
(t) T() (t) (3.10)
y(t) = ¢ x(t) + du(t)

the controllability condition (2.50) detQ.(A/b)=0 expresses a very important

property of the linear dynamic system consisting in the fact that there exists such an
input (control) variable u(t) which transfers the system from any initial state x(to) to any
given final state x(t1) in finite time t1 — to. Most often, it is assumed that the final state is
the origin, i.e. x(t1) = 0.

On the other hand the observability condition (2.51) detQ,,(A,c")=0 indicates

that on the basic of the input (control) u(t) and output y(t) variables courses given on the
finite time interval t1 — to the initial state x(to) can be determined.

The linear dynamic system with the state model (3.10) can be divided into four
parts (it is so called the Kalman decomposition of system) in accordance with Fig. 3.2:

controllable and observable part,
controllable and unobservable part,
uncontrollable and observable part,
uncontrollable and unobservable part.
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u(t)

Controllable and _,®__.
observable part 'y

v

Controllable and
unobservable part

\4

observable part

Uncontrollable
and unobservable part

Linear dynamic system

Uncontrollable and

Fig. 3.2 Kalman decomposition of linear dynamic system

For a technical practice, it is very important that uncontrollable and unobservable
parts are asymptotically stable. If the uncontrollable part is asymptotically stable, then
the linear dynamical system is stabilizable and if an unobservable part is asymptotically
stable, then the linear dynamical system is detectable.

Example 3.3
For the linear dynamic system
¥, () = —x (1) +u(t),
X, () = —2x, (1) +u(t),
X5(t) =0,
y(t) =X (1) + X4 (t)
it is necessary to carry out the Kalman decomposition.

(3.11)

Solution:
In accordance with (3.11) we can write

-1 0 0 1
A=| 0 -2 0| b=|1| c"=[10]], d=0.
0 0 0 0

Controllability (2.50)
1 -1 1
Q. (Ab)=[b,Ab,A’h]=|1 -2 4| detQ,(Ab)=0.
0 0 O
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The linear dynamic system (3.11) is uncontrollable.

Observability (2.51)
c’ 1
Qu(Ac)=| c"A |=|-1 0 0| detQ,(Ac")=0.
c' A? 1 00

The linear dynamic system (3.10) is unobservable.

On the basis of the state model (3.11) we can build the block diagram in Fig. 3.3
which indicates that the state variable x2(t) is unobservable and state variable xa(t) is
uncontrollable. From Fig. 3.3 it is obvious that the poles of the system are s;=-1,
s;=-2 and s3=0, i.e. the linear dynamic system is uncontrollable and unstabilizable,
unobservable but detectable (the observable part is asymptotically stable, while the
uncontrollable part is not asymptotically stable).

Q 1| X8 Y u(s) 1] X)) Y0
A %_ s :A > s+1 y'Y
L | Xe(9) | 1 XZ(S{
- > | s+2 g
_ S =

1 X5(8)

2 le S

1 X,5(8)

s

Fig. 3.3 Kalman decomposition — Example 3.3
We determine the transfer function of the state model (3.11) on the basis of the
relation (2.54)
det(sl — A) =s(s+1)(s + 2),
det(sI — A+bc') =s(s+2)%,
Y(s) det(sl — A+bc’)—det(sl - A)
U(s) det(sl — A)
_os(s+2) 1
s(s+D(s+2) (s+1)

G(s)=

It is obvious that the state model (3.11) had not a minimal form because in the
transfer function the compensation (cancellation) occurred, and thus the order of the
system reduced from 3 to 1.
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Example 3.4

It is necessary to verify the controllability and observability of the nonlinear
dynamic system which is described by the state model

X (t) =—x(t) +u(t),
%, (1) = =%, (t) + u(t), (3.12)

y(0) = %, (1) + %, ().

Solution:
From the state model (3.12) we get

A:{_l 0}, b:H, ¢’ =[L1], d=0.
0 -1 1

Controllability (2.50)
Qu(A b)=[b,Ab]=E :ﬂ detQ,, (Ab) =0.

The linear dynamic system (3.12) is uncontrollable.

Observability (2.51)
c' 1 1
QOb(A’CT):{CTA}:{_l _1} dEthb(A’CT):O'

The linear dynamic system (3.12) is unobservable.

On the basis of the equations (3.12) the block diagram of the linear dynamic
system can be built, Fig. 3.4.

(s) 1] X(s) Y  u(s) 1| Xus) YO
% s 4 "l's+1

. XZ(S) = - 1 XZ(S)
4’(%—' g VS+1

Fig. 3.4 Block diagram of linear dynamic system — Example 3.4

From Fig. 3.4 it follows that both state variables xi(t) and xo(t) are equal, and
therefore any state x(t) = [xu(t), x2(t)]" in the state plane (x1, Xx2) cannot be achieved by
the input (control) u(t). It is also obvious that these state variables cannot be
distinguished from each other and therefore they are also unobservable. Because the
poles are s; = s, =1, the linear dynamic system is asymptotically stable, and therefore,
even when it is uncontrollable and unobservable, it is stabilizable and detectable, and
therefore it is practically usable.
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The given linear dynamic system is of the second order, but from the outside view
it seems as the system of the first order with the transfer function
Y(s) 2

U(s) s+1

3.3 Basic canonical forms

Consider a linear dynamic system whose state model has the general form
X(t) = Ax(t) + bu(t),

y(t) =c’x(t) +du(t), (3.13a)
where
8; 8, ... G b,
A= Ay Ay ... Ay, b b:21 o], a13b)
ay 4, a,, b,

The vectors b and ¢ have two indices because the vector b is the first column in
the general input matrix B and the vector c' is the first row in the general output matrix
C for MIMO linear dynamical systems.

In the text for clarity a dependence on the time t is not explicitly expressed, as
well we will talk simply about a system (the terms a model and system will be
considered as equivalent) and indices will be used: t — transformation, co —
controllability, ¢ — control, controller, ob — observability, o — observe, observer, d —
diagonal.

Further it is assumed that the linear dynamic system (3.13) is controllable and
observable, i.e. the conditions (2.50) and (2.51) hold (it has a minimal form)

detQ,(Ab)=0 a detQ,(Ac")=0.

If we introduce the regular square transformation matrix Tt of the order n by the
relation

x=TX,, detT, =0, (3.14)

then the state model (3.13) can be transformed from the state space X into the new state
space X, i.e. we obtain the transformed state model

X, =AX +bu,

t f‘ o (3.15)
y=c, X, +du,

where
X, =T, X,
=T 'AT,,

A=TOAT (3.16)
b =T, b,

¢, =c'T,.
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The transfer constant d remains unchanged after the transformation.

Both system (dynamics) matrices A and At are similar because they have the same
characteristic polynomials, and hence the same eigenvalues, i.e.

N(s) =det(sl — A) =det(sl -T,"AT,) =
= det[T, (sl - A)T,] =

(3.17)
=detT, " det(sl — A)detT, =det(sl - A) =
=s"+a,,s" +...+a5+a,.
Thus this transformation is called the similarity transformation.
Canonical controller form
For the transformation matrix
T, =Qu (A b)Q, (A, b)), (3.182)
where
I al a'2 an—l 1 ]
a a .. 1
QL(A.b)=| ... .. . . ., (3.18b)
a,, 1 ... 0 O
1 0 .. 0 0

on the basis of the relations (3.15) and (3.16) we get (index t is necessary to replace by
the index c) the canonical (normal) controller form

X, =AX, +bu,

3.19a
y=cl X, +du, (3.19)
where
o0 1 0 0 ]
0 1 0 0
AczTc’lATcz e
0 0 0o .. 0 1
-a, - -a, ... —a -a
b 0 a1 2 n-2 n-1_| (319b)
0
0
bczTc_lb: s CI=CTTC=[bo'b17~--,bn71]-
_l_

The square matrix (3.18b) is the inverse of the controllability matrix of the
canonical controller form (3.19)

Qw (A b) =[b, A, AT], (3.20)
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for which it holds

det@,, (4,.b,)] =|det @ (4, .b,)| =1. (3.21)

It can be easily proved. Let’s multiple both sides of the equation (3.18a) from the
right by the matrix Qco(Ac, be), i.e.

TQu (A, b.) =Qg (Ab) .
Now we use relations (3.19b) and then we get
T[b,Ab,,..,A"'b=T.[T.'b, T " AT.T'b,.... T, A" 'T.T, 'b] =
=[b, Ab,...,A"'b] = Q. (A,b).

Supposing that the system is controllable and observable, its transfer function can
be determined

G(s):wch (sl —A)'b+d=c] (sl —A.)"b, +d =
U(s)
b, ,s""+...+bs+b,
s"+a, 8" +...+as+a,

(3.22)
+d,

from which it is evident that the vector ¢ is given by the coefficients of the transfer

function numerator (3.22) [see (3.19b)]. The coefficients in the denominator of the
transfer function (3.22) are the coefficients of the characteristic polynomial of the linear
dynamic system (3.13) and (3.19) [see (3.17)], i.e.

N(s) =det(sl — A) =det(sl —A)=s"+a _,s"" +...+as5+a,. (3.23)

It is very important that, due to the specific structure of the matrix (3.18Db), it can
be compiled only on the basis of knowledge of the characteristic polynomial
coefficients of the original system (3.13) [see (3.23)], i.e., without prior knowledge of
the transformed canonical controller form (3.19).

The block diagram of the linear dynamic system in canonical controller form is
shown in Fig. 3.5.

Fig. 3.5 Block diagram of linear dynamic system in canonical controller form
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Canonical observer form
For the transformation matrix

T," =0y (4,,¢,)Qp (A "), (3.24)
where
I al aZ an—1 1_
a, a; .. 1
Qa(Ac)=| ... ... ... ... .. |=QX(A.b), (3.24b)
a,, 1 ... 0 O
|1 0 ... 0 O]

on the basis of the relations (3.15) and (3.16) we get (index t is necessary to replace by
the index 0) the canonical (normal) observer form

X, = AjX, +b,u,

3.25a
y=c. X, +du, (3.253)
where
0 0 0 -a |
1 0 0 -a
5 01 .. 0 -a
AOZTO ATOZ 1
0 0 0 —a,,
0 0 .. 1 -a,
F i (3.25h)
by
by
-1 b2 T T
b,=T,'b=| 7 | ¢ =c'T,=[0,0,...,0,1].
n-2
[ Y1

Also in this case the square matrix (3.24b) has the same form and structure as the
matrix (3.18b) and therefore it holds

[det Qi (A, ¢3)| =|det Qs (A, ;)

From the comparison of relations (3.19) and (3.25) follows that between the
canonical controller forms and canonical observer form duality holds

=1 (3.26)

X (1) = AcX (1) +bou(t), X, (1) = A%, (t) + bu(t), (3.27)
y(t) =g X, (t) +du(t), y(t) = cg X, (t) + du(t), '
canonical controller form canonical observer form

where
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A=A < A=A,
b, =c, = b, =c¢,, (3.28)
cy =h] & ¢l =hl.

The transfer constant d remains unchanged in all state models.

Both matrices A, and A, = A in both state models (3.27) have the Frobenius

canonical form characterized in that the first or the last row, or the first or the last
column contains the negative coefficients of the characteristic polynomials N(s) for
an = 1. Their characteristic polynomials are the same and they are given by relation

N(s) =det(sl — A) =det(sl — A,) =det(sl —A)) = (3.29)
=s"+a, " +...+a5+a, = (5—5)(5—5,)-(5—S,), '
where s; are the eigenvalues which are the same for matrices A, A, and A, = A/ .

The block diagram of the linear dynamic system in canonical observer form is
shown in Fig. 3.6.

u

Fig. 3.6 Block diagram of linear dynamic system in canonical controller form

From the above it is clear that the canonical controller form (3.19) and canonical
observer form (3.25) we can obtain for the controllable and observable linear dynamic
system from the transfer function (3.22) or by the transformation (3.18) and (3.24).
Advantageous is the use of a duality between the two canonical forms (3.27) and (3.28).

Canonical diagonal form

Consider the controllable and observable linear dynamic system with the transfer
function [see (2.55)]

Y(s)  bs"+...+bs+b,
U(s) s"+a,,s"'+...+as+a,

G(s) = +d. (3.30)

Assuming that the poles are different from each other, we can write



43

_YO) _y4. b, ,s""+...+bs+b,

T Ry Sy wy ey
S $—5)(s=5S,)...(s=5S
' ? " (3.31)
S W B
S—S, S-S5, S-S5,
and the state model will
X4 =S Xg; +U,
X2 = S,Xg2 +U,
: (3.32a)
Xgn = Sy Xgn U,
Y =C Xy +CyXy, +-+-+C Xy, +dU,
or
X, = A, X, +b,u,
‘ AT‘“‘ ‘ (3.32h)
y =Cy X4 +du,
where
ss 0 ... 0
0 s, ... O 1
A = ? T I O RS (3.32c)
0O 0 ... s 1

n

The state model of the linear dynamic system (3.32) with the matrix Aq in whose
diagonal are the poles is called the canonical diagonal (modal) form.

The block diagram of the linear dynamic system in canonical diagonal form is
shown in Fig. 3.7.
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d
u Xdl y
R I ™ & )
Sl
X42
< f > C, —»(%?
SZ

\ 4

denc_T

Fig. 3.7 Block diagram of linear dynamic system in canonical diagonal form

State models in canonical diagonal form allow directly to verify their
controllability and observability, see Examples 3.3 and 3.4.

Consider now that the transfer function (3.30) has some multiple poles. For
simplicity, assume that the multiplicity of pole s: is 3 and that the remaining poles are
different from each other, i.e.

n-1
-3
S s—5,)°(s=5,)(s=S:)...(s=5S
1 4 5 n (333)
o — =+ C =+ o 4 G .. &
(s—s)° (s—s)° s—s, s-s, S-S5,
then the state model will have the form
Xg1 = S1Xg1 + Xq2
Xg2 = $1Xg2 + Xg3.
Xgq3 = $1X43 T U,
X4 = S4Xgqs + U, (3.34a)

an = Snan + U,

or
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Xy = Ay Xy +byu,

3.34b
y=C4 X, +du, ( )
where
o]
0
J, 0 1
Ad:{ol Jj’ by = Ll i =[c,,c,,....C.]. (3.34c)
_1_
The square matrix J; and Jo are given by relations
s, 0 ... O
s, 10 0 s 0
J,=|0 s 1}3J,= > : (3.34d)
0 0 s
0O 0 ... s

n

The state model of the linear dynamic system in the form (3.34) is so called
Jordan canonical form and the square matrices (3.34d) are called Jordan blocks.

The block diagram of the linear dynamic system in Jordan canonical form is
shown in Fig. 3.8.

The case with multiple real poles can be easily transferred to the case with
mutually different poles, e.g. by adding small positive numbers, because the final
properties of the dynamic system changes very slightly. E.g. in the transfer function
(3.33), we use s1 =1, S2 = 51— ¢ and s3 = S1 + ¢, where ¢ is a very small positive number.

For a transformation of the state model (3.13) on the canonical diagonal or Jordan
form it can be also used similarity transformation, but determining the transformation
matrix is complex and beyond the scope of this textbook.



46

» d
» C,
u Xas X4z X41 y
— ] > [ 4 | G
X
S, | S & S
Xga >
q I » C4 ¢“
Sy

Fig. 3.8 Block diagram of linear dynamic system in Jordan canonical form (3.34)

Example 3.5
The linear dynamic system is described by the state model
X ==X +2X%,,

X, ==X, +U, (3.35)
Y =2X +X,.

The state model (3.35) it is necessary to transform into the above mentioned three
canonical forms.

Solution:
For the state model (3.35) holds

A:r 2}, b:m, ¢’ =[21], d=0.
0 -1

1
We verify the controllability and observability using relations (2.50) and (2.51).
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Q,, (A,b) =[b, Ab] = ﬁ) _ZJ detQ,, (A,b)=—2 0.

The linear dynamic system (3.35) is controllable.

T

Qob(A,cT){ﬁ }:{2 1}, detQ,, (A cT)=8%0.
c -2 3

A

The linear dynamic system (3.35) is observable.

Because the linear dynamical system is controllable and observable a transfer
function can be determined. On the basis of the relation (2.54) it can be written

N(s) =det(sl - A) =

s+1 -2 2
0 s =(s+1)°=s"+2s+1=s =5s,=-1<0.
+

The linear dynamic system (3.35) is asymptotically stable with the double real
s+1 -2

pole s; = s, =—1.
s+1 -2 . 00
0 s+1| |2 1 2 s+2

=(s+1)(s+2)+4=5*+3s+86,

det(sl — A+bc’) =

Y(s) det(sl —A+bc")—det(sl —A)
U(s) det(sl — A) -
_ s+5  Dbs+h,

Cs2425+1 s’+aS5+3a,

G(s) =
(3.36)

Canonical controller form
On the basis of the transfer function (3.36) we can directly write [see (3.19)]

0 1 0 1 o] . ) )
A::Lao —aj:{—l _2} bc:u’ c. =[by, b 1=[51],

Xcl = XcZ’
Xep ==Xy — 2%, +U,
Yy =5X, +X,-
Now we use the transformation matrix (3.18):

q B 1 B 2 1
Qco(Ac,bc)—{1 0}{1 0}

4 0 212 1 2 0
Tc:Qco(Aab)Qco(AClbc):|:1 _1:||:1 O:|:|:l 1:|1
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1
L oadiT, 11 0] |3 O
‘ _H_E{—l 2| |1 |
2
L,
A —TAAT, = > -1 2}{2 o}:{o 1}
Co 1 Lo -1 1) [-1 -2)
2
> 001 1o 2 0
b, =T, b= _21 1 L_:H cl :CTTC:[Z,l]L 1}:[5,1].
2

We see that we have received the same result. The block diagram of the linear
dynamic system (3.35) in canonical controller form is shown in Fig. 3.9.

y

XcZ

Fig. 3.9 Block diagram of linear dynamic system (3.35) in canonical controller form —
Example 3.5
Canonical observer form
On the basis of the transfer function (3.36) we can directly write [see (3.25)]

e 2B e

Xo1 ==Xy, +5U,
Xyp = Xo3 — 2%, +U,
Y = Xo2-
Now we use the transformation matrix (3.24):

1 2 1
Q03<Ao,c§>=ﬁ oH1 0}
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PP 2172 11 [2 5
T, :Qob(Ao1Co)Qob(Avc):|: }{ }{ }

1 0]-2 3] |21
(1 5
- _adiT,' 111 -5/ |7g @
° detT,* 8/-2 2 1 17
L4 4
[ 1 5
2 5T-1 27" g | o -1
“TIAT, = 8 8 |- ,
S P P Y
4 4
1 5
.. [2 5]0] [5 5 g
bo:Tolb:[z JM:H c; =c'T,=[21 B 8 |=[01

As in the previous case we have received the same result. It is also clear that
among the canonical controller form and canonical observer form the duality holds
(3.28).

The block diagram of the linear dynamic system (3.35) in canonical observer form
is shown in Fig. 3.10.

X02 =

\ [

:
éHIXj%I

Fig. 3.10 Block diagram of linear dynamic system (3.35) in canonical observer form —
Example 3.5

Jordan canonical form
We write the transfer function (3.36) in the form (3.33), i.e.
G(s):Y(S): s+52= 4 - 1 _ G - c, '
Uus) (s+D)° (s+1)° s+1 (s+1° s+1

On the basis of the relation (3.34) we can directly write
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Xg1 =—Xq1 + Xg2,
Y =4X4 + X45-

-1 1 0
Ay =J =|:0 _1:|, by :L:|’ CJ =[41].

The block diagram of the linear dynamic system (3.35) in Jordan canonical form
is shown in Fig. 3.11.

u%_JX‘”%?_,IX‘“Ll %y

Fig. 3.11 Block diagram of linear dynamic system (3.35) in Jordan canonical form —
Example 3.5

\ 4

3.4 Solution of linear state equations

Consider the linear dynamic system with the state model [see (2.49)]
X(t) = Ax(t) + bu(t), x(0)=x,, (3.37a)
y(t) =c" x(t) +du(t). (3.37b)
Using Laplace transform and considering the initial state x(0) = X, we get
SX(S)— X, = AX(s) +bU (s),
Y(s)=c" X(s)+dU(s).
From the first equation we get
X (s) = (sl — A) ™ x, + (sl —A) " bU (s)

and after substituting into the second equation and modification we receive the
transform of the solution

Y(s)= c" (sl —A)*x, +[c" (sl —A)*b+dJU(s) (3.38)
free response= forced response=
responsetoinitialconditions responsetoinput

Now we find the solution of the equations (3.37) in the time domain by the
method of variation of constants.

Consider that the solution of the equation (3.37) has the form
x(t) =e™c(t), (3.39)
where

m_ g ta e B
e =l+-A+—-A"+=-A"+--, (3.40)
u 2! 3
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this is so called fundamental matrix and c(t) is still an unknown vector function.
First, we will show some important properties of the fundamental matrix (3.40):

e =1, (3.41a)
2 3
LIV (VL S 0 A
dt dt 1 2! 3
2 2 3
=A+§A2+3LA3+---=A{|+3A+t—A2+t—A3+---J=
2! 3! 1 2! 3
2 3
=[|+£A+t_A2+t_A3+...]A=
il 2! 3
= Ae™M =e™A. (3.41b)
At t t? o
fefdt=[l1+_ A+ A"+ A’+...|dt=
1 2! 3

t? t t
—tl+—A+—— A+ — AP4... =
2.1 3.2 4.3

= AR 1)=(eM—1)A (3.41¢)

After substituting the assumed solution (3.39) into the state equation (3.37a) we
get

Aec(t)+e é(t) = Ae™ c(t) +bu(t) =
ét)=e " pu(t), c(0)=x, , (3.42)

t
c(t) = je‘”” bu(r)dz + x,.
0
Now we substitute (3.42) into (3.39) and we get

x(t) =" x, +e™ ﬁ e " u(r)d r}b (3.43)

0

and after substitution into the input equation (3.37b) we obtain

yt)=c’ e x, +c’ e™ ﬁ e u(r)d r}b +du(t), (3.44)

where the first part of the solution ¢ e*" x, is the free response = the response to the
t

initial condition and the second part of the solution ¢’ e™ {je’“ u(z)d r}b +du(t) is
0

the forced response = the response to the input.
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From the comparison of relations (3.44) and (3.38) it follows that the term

(sl —A)*
is the Laplace transform of the fundamental matrix (3.40), i.e.
Lie” = (sl - A)* < e =L(s1 - AL}, (3.45)

Now suppose that the input variable of the linear dynamic system has the staircase
form (Fig. 3.12)

u(t)=u(kT) for kT<t<(k+DT, k=12,..., (3.46)

where KT is the discrete time, T — the sampling period.

u(t) 4
u(kT)

»

Fig. 3.12 Courses of input variables u(t) and u(kT)

On the basis of the relation (3.43) for t=kT and t = (k + 1)T we can write
0

KT
X(KT) =e™ x, +e™T { [e* u(r)d z}b ,

(k+D)T

)
X[(k+)T]=e DT x + eA("*l)T{ fe* u(r)d r}b =
0

_ eAT {eAkT X + eAkT |:kj‘re—Ar U(T) d T:|b} + eA(k+l)T |:(k-]‘1)eT—Ar U(T) d Tj|b _
= 0 =
KT

0

x(KT)
(k+1)T
=T x(kT) { [eAlledT=g r}bu(kT). (3.47)
kT

The integral in the last relation can be simplified. We select the new variable
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v=(k+1))T -7 = dv=-dr,
7=kT = v=T, r=(k+1)T = v=0

and then we can write

(k+1)T 0 T
J‘ eA[(k+1)T—f]dz_:_J'eAVdV:J‘eAVdV.
KT T 0

Now the state equation can be written in the form

.

X[(k+DT]=e"" x(kT)+ ( [e*d vjbu(kT) . (3.48)
0

On the basis of the relations (3.40) and (3.41) we get

eAT:|+1AT+1(AT)2 +...:§_1(AT)i, (3.493)
1 21 =il

}eAVdv—T{I REUN. +1(AT)2+--}—T§L(AT)‘ (3.49h)
0 21 3l (i +1)! ' '

Now the discretized state equation of the linear system (3.37) can be written in the
form

X[(k +D)T]= Ao x(KT) + bpu(kT), (3.50a)
where
A, =e"l = i%(AT)‘ , (3.50b)
i=01:
P Av _ < 1 i
bp =(£e dv]b_T{g—(i +1)!(AT) }b : (3.50c)

When calculating the matrix Ap and the vector bp it is suitable to use a numerical
method. First we determine the matrix

) 1 .
D =T§)M(AT)' , (3.51a)
and then we calculate
A, =1+AD, (3.51b)
b, = Db. (3.51c)

The output equation does not change when it is discretized, and therefore the
discretized (discrete) linear dynamic system obtained from the continuous linear
dynamic system (3.37) has the form

X[(k +D)T]= Ay X(KT) +byu(kT), x(0) =X, (3.52a)
y(kT) =c" x(KT) + du(kT), (3.52b)

where the system matrix Ap and the input vector bp are given by formulas (3.50b) and
(3.50c) or (3.51).
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The discrete state model (3.52) can be used for a numerical calculation of a
response.

Example 3.6
The continuous linear dynamic system is described by the state model
X (t) ==X (£) + 2, (1), ¥ (0) = X0 =1,
X, (t) =—2X,(t) +u, X, (0) =Xy =2, (3.53)
y(£) =, (t).

It is necessary to determine general formulas for a calculating of the response to
any input and further it is necessary to determine the step response.

Solution:
For the linear dynamic system (3.53) it can be written

A=  b=| | ¢" =[10], d=0.
0 -2 1

We verify the controllability and observability [see relations (2.50) and (2.51)]

Qco (A! b):[b!Ab]:|:2 22:|, detho (A, b)=—2¢0 =

the linear dynamic system is controllable.
T
T C 1 0 T
Qob(ArC ):|:CTA:|=|:_1 2:|’ dEthb(A!C ):2 =

the linear dynamic system is observable.

Because the linear dynamic system is controllable and observable therefore the
state model (3.53) has a minimal form.

Solution in complex variable domain, i.e. on basis of Laplace transform
We determine the transform of the fundamental matrix [see (3.45)]

L™ f=(st - A)* {Hl 2 T _aditsl = A) _

0 s+2 _det(sI—A)_
1 2 (3.54)
1 yst2 2 s41l (s+1)(s+2)
(s+D(s+2)] 0 s+1 0 1 '
S+2

In accordance with the relation (3.38) the transform of the response is given by
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Y(s)=c' (sl — A)'[x, +bU(s)] =

1 2

_ s+1 (s+D(s+2) J|1],]0

o F [ ) -
S+2

1 2 17 o
)= L 1 (s+D)(s+ 2)}{2} {JU (s)} '

-1 14 1 2 1 0
y(t) =Ly (s)l =L {LH’(s+1)(s+2)}[{2}{1}u (s)]} . (3.55)

For u(t)=7(t)=U(s) :% we get

2
y() =LY SF052 | get_gea (3.56)
s(s+1)(s+2)

The course of the step response is in Fig. 3.13.

D &
18 |

0.6+

0.2+

Fig. 3.13 Step response of linear dynamic system (3.53) — Example 3.6

Solution in time domain
In accordance with the relation (3.44) we can write

y(t)=c' e‘\t{x0 + ﬁe‘A’ u(zr)d r}b} . (3.57)

From the relation (3.54) we determine the fundamental matrix
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1 2
—t -t -2t
eAt_ 1) s+1 (s+D(s+2)||_|® 2e " -2e . (3.58)
0 -
S+2

The fundamental matrix (3.58) we substitute into (3.57) and after modification we

y(t)=[e", 2e-t—2e‘2t]{ﬂ+[j{e; Zerzezr}u(ndr}b} (3.59)

We see that the general formula is rather complicated for the calculation of the
response to any input in the time domain.

get

Now consider the input in the form of the unit step u(t) =7(t) =1 for t>0.

First we calculate the expression with integral

¢ t[er 2e"—2e? e'-1 2e'—e*—1]
feATdr:fﬁ) € Zre }dr: lGZt 1
0 € PR

0

t el-1 2e'—e?-1]g] [2e'-e*-1]
|:I e_ATd T:|b = 0 leZt 1 :| = 1 2t 1 . (360)
0

2% T 1

After substitution into (3.59) and modification we get

17 |2e'-e*—1
y(t)=[e", 2e"-2e™] ,|F| Leal =1+3e'-3e%.
27 2

We received the same result as in the previous case.

Discretization of continuous linear dynamic system

For the discretization we use first analytical relations (3.50b) and (3.50c) and later
numerical relations (3.51) for i =0, 1, 2, 3. The sampling period is chosen e.g. T =0.1.

On the basis of relations (3.50b) and (3.58) we can write (we consider 5 decimal
places).

AD:eAT =

e’ 2e7-2e% | |090484 017221
0 e” | | 0 081873]

Similarly, on the basis of relationships (3.50c) and (3.58) we get

T , T[e™ 2e7_2e7% 0 1-2e " +e "
{5
Lo ° © 2 2

_[0,00906
- 10,09063 |

Now we use the relations (3.51) fori =0, 1, 2, 3:
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1 1 {13,7034 13044

D=T |+—AT+1(AT)2+1(AT)3 =
2! 3l 4l 144 0 130512

090484 017221
A, =1+AD= ,
0 081873
0,00906
b, = Db= .
0,09063

We see that after rounding in both cases we get the same results.

|
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4 STATE SPACE CONTROL

The chapter briefly describes the design of a state controller and observer for the
SISO linear dynamic system.

4.1 State space controller

Development of a state space control is associated with the development of
aeronautics and astronautics. It allows to control very complex and unstable systems,
where classical control with one and two degrees of freedom controllers does not give
satisfactory results.

Consider the SISO controlled linear dynamic system (in state space methods the
name “controlled system” is most often used instead of the controlled plant)

X(t) = Ax(t) +bu(t), X(0)= X,, (4.1a)
y(t) =cTx(t), (4.1b)

which is controllable, observable [see (2.50) and (2.51)] and strongly physically
realizable (d = 0). Its characteristic polynomial has the form

N(s) =det(sl —A)=s"+a ,s" " +...+as5+a, =
=(s—5)(s—5S,)...(S—-5S,),

where s1, Sa,..., Sn are the system poles.

4.2)

The task of the state space controller (state feedback, feedback controller)
represented by the vector (Fig. 4.1)

k=[Ky,Ky,..., K, ], 4.3)
is to ensure for the closed-loop control system its characteristic polynomial
N, (s)=det(sl —A,)=s"+a" s"" +...+a)'s+a) =
=(s—s)(s—5)...(s -

with given poles s",s,’,...,s, (see Appendix E).

(4.4)

A feedback control by using a state controller (4.3) ensures the characteristic
polynomial of the closed-loop control system (4.4) with the desired poles is often called
a modal control. The poles determine so called modes, i.e. the characteristic (free)
moves of a closed-loop control system.

The closed-loop control system with the state space controller in accordance with
Fig 4.1 may be described by the state model

X(t) = A, X(t) +bw(t), x(0)=x,, (4.58)
y(t) =c"x(t), (4.5b)
where the system matrix of the closed-loop control system is given (see Fig. 4.1b)

A,=A-Dbk". (4.6)
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The vector k of the state space controller can be obtained by comparing the
coefficients of the control system characteristic polynomial N, (s) =det[sl —(A—bk")]
with the corresponding coefficients of the desired control system characteristic
polynomial N,,(s)=det(sl —A,) at the same powers of complex variable s. In such a

way the system of n linear equations is obtained for n unknown components k; of the
vector k. For large n, this procedure is demanding.

a)
, X
WO uw <0 Olx(t) y(t)
—&@— b > [()A7 | Ryl T —>
Controlled
A 1 system
TStatespace
K' (mmd  controller
b)
w'(t) y(t)
— b =g T —>
A
C) X,
: X(t) l ‘ .
w(t) . [@dr> X(t) > y(t)
A,

Fig. 4.1 Block diagram of the control system with a state space controller without input
correction: a) original, b) modified, c) resultant

The dependence between output yw(t) and input w'(t) in the steady state (t — o)
can be determined on the basis of (2.53), i.e.
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y= Isimo[cT (sl —A,) bW =

y=—"A, bw . (4.7)
In order to in the steady state the equality
y=w (4.8)
holds, the correction
1
K, =—————. 4.9
"= T AT (4.9)

in the input must be placed (Fig. 4.2)

The state space controller design is easy for the state space model of the
controlled system in the canonical controller form (3.19).

Xo
w(t) w'(t) X(t) lx(t) y(t)

—| k,—> b [(e)d7|wpp o —

Ay

Fig. 4.2 Block diagram of the control system with a state space controller

Consider that the matrices A and Ay are transformed into canonical controller
forms in accordance with the relations (3.18), (3.19), then equation (4.6) can be written
in the canonical controller form

A = A —bek! . (4.10a)
i.e.
[0 1 0 0 |
0 1 0
0 0 o ... 1
-3, -a -a, .. —a
o T ? e (4.10b)
0 1 0o ... 0 0
0 0 1 .. 0 0
=l = R K ko T
0 0 o ... 1
- - —a ... —3,.1| [1

We can see that the equalities hold

w
-y =—a,—k; =
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k,=a',—a_, for i=1,2,..n. (4.11)

The last equalities can be written in the vector form

k.=a"-a, (4.12)
where

a"=[ay,a),....,a",1", (4.133)

a=[ay,a,...,a, ] (4.13b)

are the vectors of the coefficients of the characteristic polynomials Nw(s) and N(s) [see
(4.4) and (4.2)].

We have received the vector ke of the feedback state space controller in the
canonical controller form, and we must therefore transform it back for the original
controlled system (4.1). We can write

kIx, =k'x
ce . }:kT:kCTTCI:
X, =T, X
k' =(@"-2a)'T", (4.14)
where the transformation matrix T¢ is given by the relations [see (3.18)]
T, =Qu (Ab)Q5 (A, b,), (4.15a)
Q. (Ab) =[b, Ab,..., A" 0], (4.15b)
fa, a, ... a,,; 1]
a a .. 1
S(ALb)=| o ] (4.15¢)
a,, 1 ... 0 O
1 0 ... 0 0]

The relation (4.14) is sometimes called the Bass-Gura formula.

For the direct calculation of the feedback vector k' is often used Ackermann’s
formula (see Appendix D)

k' =[0,0,...,01]Q. (A b)N,, (A) =

(4.16)
=[0,0,....0JQ. (A D)[A" +a* A"  + ...+ a"A+a1].

Procedure:

1.  Check the controllability and the observability of the controlled system (plant)
[relations (2.50) and (2.51)].

2.  Formulate the requirements for the control performance and express it by the
desired pole placement of the control system (see Appendix E).

3.  Determine the coefficients of the characteristic polynomials N(s) and Niw(s)
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[relations (4.2) and (4.4)].

4.  Compare the coefficients of the control system characteristic polynomial
N, (s) =det[sl —(A—bk")] with the corresponding coefficients of the desired

control system characteristic polynomial N, (s)=det(sl —A,) at the same

powers of complex variable s and solve the system of n linear equations for n
unknown components of the vector k. In the case of high n use the transformation
matrix (4.15) and the formula (4.14) or the Ackermann’s formula (4.16).

On the basis of the relation (4.9) determine the input correction k.
Verify the received control performance by a simulation.

Example 4.1
For the SISO linear dynamic controlled system (plant) with the state model
X, ==X + X, —U,
Xy =X, + X, + U, (4.17)
y=X

it is necessary to design the state space controller which ensures for the closed-loop
control system the poles

s’ =s, =-1.

Solution:
It is obvious that for the controlled system (4.17) the relations hold

A{_ll ﬂ b={_1} ¢" =10} d=0.

1
First we verify on the bases of the relations (2.50) and (2.51) the controllability
and the observability.

Q. (A b) =[b, Ab] = {_11 (ﬂ detQ, (A b)=—2%0 =

The controlled linear dynamical system (4.17) is controllable.

T
Qob(A!CT):{ c':rA}:|: 11 2:|’ dethb(A’CT):lio =
C —

The controlled linear dynamical system (4.17) is observable.

Because the controlled linear dynamic system is controllable and observable we
can determine on the basis of the relation (2.54) its transfer function

s+1 —1JJ )
=5" -2,
_1 S —

s+1 -1 -1 0 )
+ =5°—5,
-1 s-1 1 0

det(sl — A) =

det(sl — A+bc’) =
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Y(s) det(sl —A+bc)—det(sl —A) —s+2
U(s) det(sl - A) s2-2

The controlled linear dynamic system described by the state model (4.17) or the
transfer function (4.18) is unstable with the poles s, , =+4/2 and it is also with a

nonminimum phase and an unstable zero. In this case a using a conventional controller
and its tuning is not only very difficult but also inappropriate.

G, (s) = (4.18)

The coefficients of polynomials in the denominator and the numerator of the
transfer function (4.18) are:

a,=-2,8 =0 =a=[a,a] =[-20[, (4.19)
b, =2,b, = 1.

The desired characteristic polynomial of the closed-loop control system (4.4) has
the form

N, (s)=det(sl —A,)=s’+a's+a) =(s—s,")(s—S)) =

(4.20)
=5’ +2s+1.
The coefficients of the desired characteristic polynomial Niw(s) are:
ay=la'=2 = a"=[ay.a"] =[L2]. (4.21)

Method of comparison of coefficient
On the basis of the relation (4.6) we determine the closed-loop control system

matrix
-11 -1 -1+k 1+k
=A-bk' = - k., k1= ! 2.
A {1 J {1}[ vl {1_k1 1_kj

The characteristic polynomial of the closed-loop control system is

s+1-k, -1-Kk
N, (s) =det(sl —A+bk™) ="~ 2

-1+k, s-1+k, (4.22)
=s% +(k, —k,)s+ 2k, — 2.
Now we compare the coefficients of polynomials (4.22) and (4.20), i.e.
k, —k, =2 k=2 37
2@—2:1}:k _%zsz:{?E} (4.23)
272

Using the relation (4.9) we determine the input filter (correction)

1 9
~1+k 1+k2}_ 5 3

A”:{l—h 1-k,

E
2 2
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. T B DR
Aj:adJAN: 1 2 2(_| 2 2
detA, 5,9/ 1 1|71 1
4 4L 2 21 L2 2
5 9]
1 T 1 _E _E _l 1
= =—"Al'b=-10 =2 = k, ==
K Ay [ ]1 T w5
2 2

The block diagram of the control system with the designed state space controller
(4.23) is shown in Fig. 4.3 and its step response for zero initial conditions (xo = 0) is

shown in Fig. 4.4. The initial undershoot is due to the unstable zero s? =2 [see (4.18)].

Xo
, X(t) lx(t) y(t)
w9 % %ﬂ {ﬂ PO ﬂ-»@--» Lo —
Ky b 11 ’
i
A
3 7
3 %

Fig. 4.3 Block diagram of control system with state space controller — Example 4.1

yin 4 w(d)
1

0.8F

0.6 -

0.4+

Fig. 4.4 Step response of control system — Example 4.1
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Method of transformation
In accordance with the relation (4.15) we can write

. ~1 2To 1] [2 -1
Tc:Qoo(A’b)Qco(Ac’bc):|:l O:||:1 0:|:|:0 1:|,

T_l_adjTC_l{l 1}_% %
© detT, 2[0 2] |5 1

Now we use the relation (4.14) for (4.19) and (4.21)

cere-BETG 6

We received the same result, see (4.23).

Ackermann’s formula

We will use the Ackermann’s formula (4.16) and we get
kT =[0 1]Q. (A b)[A* +2A+1],

~ 4 )
sapy |t 2] _adiQuab) 1fo 2] |9 1
. 1 0] detQy(Ab) -2|-1 -1
-11 , [20
A= , A° = )
1 1 0 2
After substitution and modification we obtain the same result as in the two
previous cases, i.e.

oo o 02 8 O

It is obvious that for a higher orders a digital computer is suitable.

2 2

N

Example 4.2
For the SISO linear dynamic controlled system (plant)
X, ==X —4X; + 2u,
X, = 2% —2X, —2X5 + U,
Xy = —4X5 —2U,
Y ==2X +4X, + X

it is necessary to design the state space controller which ensures for the closed-loop
control system the poles

S'=s, =83 =—2.
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Solution:
It is obvious that for the controlled system the relations hold

X, -1 0 -4 2
X={X%| A=| 2 -2 =2| b= 1|, c"=[-2 4 1].
X, 0 0 -4 -2

Controllability verification:

2 6 -38
Qw(Ab)=[b,Ab,A’b]=| 1 6 -16|,
—2 8 -32

detQ,, (A,b) =-504=0 = The controlled system is controllable.
Observability verification:
c’ -2 4 1
Qp(Ac’)=| c’A|=| 10 -8 -4|
c'A’| |-26 16 -8
detQ,,(A,c’)=432=0 = The controlled system is observable.
From the controlled system transfer function

Y(s) det(sl —A+bc")—det(sl —A) —2s*+65+92
U (s) det(sl — A) s®+7s*+14s5+8

Guy (s)=

it follows: a0=8,a1=14,a,=7,a3=1,b0=92,b1 =6, b2=—-2, i.e.
a=[8, 14, 7], c =[92, 6, 2.
The desired control system characteristic polynomial has the form
N (s)=(s+2)°=s*+6s*+12s+8,
and therefore the vector of its coefficients is
a¥=[8, 12, 6.
Method of transformation
The transformation matrix (4.15) has the form

a, a, 1 32 20
TC = QCO (A’ b)Qc_(;l(AC ’ bc) = [b1 Ab1 Azb] a2 1 0 = 40 13
1 0 0| |-4 -6
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5

126
19

© 7| 126
47

| 126

1

84
2
21
16

_Z__

On the basis of the relations (4.14) there is obtained

k" = (aw

1 4
—a)T'=|— 0 =2|.
)T° [14 7}

Ackermann’s formula

On the basis of the Ackermann's formula (4.16) we can write:

8 2 11
2 6 -38]" 683 9 42
5 1
2(Ab)=| 1 6 -16 - = =
Qo (A/D) 63 18 84
-2 8 -32 5 1 1
| 126 18 84|
-1 0 -4 10 20 -1 0 -84
A=l2 -2 -2| A’=|-6 4 4|, A®={14 -8 0],
0 0 4 0 0 16 0 0 -64
1 0 -12
N (A)=A*+6A*+12A+81=(2 0 0 |
00 8

K =[o 0 1]QCj(A,b)NkW(A):[ﬁ 0 ﬂ

We received the same result.

The state model of the closed-loop control system without the input correction
(filter) will be in the form

g . 3]
7 7

27 18

=A-bk'=| == -2 -—|,
A 14 7
1, .2

L7 7
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X1:—§x1—§x3+2w’,
7 7
X, :Exl—sz —§x3+w’,
14 7

.1 20 ,
X3:7X1—7X3—2W,

y =—=2X +4X, + X5.
The input correction is given by the relation (4.9)

1 2
Ky =~ == o=
cA/b 23

and the corresponding state model of the control system with the input correction has
the form

v 4

wi(t)
N

Fig. 4.5 Step response of control system with state space controller and input correction

— Example 4.2
xl——§ 1—§xg+iw,
7 7 23
xz_le ZXZ—EX3+ 2 W,
14 7
x3:1 1—@x3—iw,
7 7 23

y ==2X, +4X, + X5.
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The step response of the control system with the state space controller and the
input correction is shown in Fig. 4.5. The initial undershoot is caused by the unstable

zero (s, =8.446).

4.2 State observer

The state variables in real dynamic system cannot often be measured due to their
unavailability or high measuring noise and costs. In these cases, it is necessary to use
the state observer (estimator).

We will focus on the design of the Luenberger asymptotic full order observer
(further only the observer), i.e. such the observer which estimates the state variables

x(t) which are asymptotically approaching the real state variables x(t).

Consider the SISO linear dynamical system (4.1), which is controllable,
observable and strongly physically realizable with the characteristic polynomial (4.2).

For this linear dynamic system the Luenberger observer has the form (Fig. 4.6)

X(t) = AR()+bu()+1y(t), X(0) =Xy,
g(t) = X(),
where A, is the square observer matrix of order n [(nxn)], bi — the vector of observer
input of the dimension n, ¢ — the vector of observer output of the dimension n, | — the

vector of Luenberger observer gain (correction) of the dimension n, by ,A“ are
marked the asymptotic estimates of the corresponding variables.

(4.24)

After the definition of the state error vector &(t) by the relation

g(t) = x(t) — X(t) (4.25)
and considering the relations (4.1) and (4.24) we get
&(t) = (A-IcT)x(t) — AX(t) + (b—b)u(t). (4.26)

It is clear that the state error vector &(t) should not depend on the input variable
u(t) and the estimate ¥ (t) for the real state x(t) should be c"x(t), and therefore it must

hold

b =b, ¢ =c. (4.27)
If we choose
A =A-Ic (4.28)

then for the assumption (4.27) the linear differential equation
et)=Aset), &=X%X,—%, (4.29)

is obtained which describes the time course of the state error g(t). The initial estimate
X, s supposed to be zero in most cases.

It is clear that for the asymptotic state estimate X(t) it must hold

to>w = X({t)—> x({t) = &t)—>0, (4.30)
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I.e. the linear differential equation (4.29) must be asymptotically stable.

It is obvious that in order for the state estimate X(t) to be sufficiently accurate

and fast for the changes of the real state x(t), the observer dynamics described by (4.24)
and expressed by the characteristic eigenvalues of the matrix A; must be faster than the
dynamics of the observed system (4.1), expressed by the characteristic eigenvalues of
the matrix A. In the case of state space control the dynamics of the observer must be
faster than the dynamics of the closed-loop control system.

The observer characteristic polynomial is
Ny, (5) = det(sl — A) =
=s"+al s""+...+as+a=(s—p)S—p,)...(s—p,),
a' =[a),ay,...a) ,1", (4.32)

where p; are the characteristic eigenvalues of the matrix A (the observer poles), a' — the
vector of the observer characteristic polynomial coefficients.

(4.31)

Similarly, the characteristic polynomial of the observed system (4.1) is given by
(4.2) and the vector a is given by its coefficients (4.13b).

The observer asymptotic stability demands fulfilment of the conditions
Rep, <0 for i=12,..,n (4.33)

and furthermore, in order for the observer to have faster dynamics than the observed
system, its all poles pi must lie to the left of all poles s; of the observed system, i.e.

min |Re p;| > max|Ress;|. (4.34)

I<i<n 1<i<n

The convergence X(t) — x(t) will be faster, if there will be greater margin in the

inequality (4.34). It is often stated as a decuple, but too great a margin in the inequality
(4.34) leads to large values of the components |; of the state correction vector I, and
therefore to a large amplification of noise. Therefore, this margin shall be chosen from
two-fold to five-fold (it does not apply for integrating systems).

The observer poles are usually chosen as multiple real
p,=—-p, p>0, (4.35)
and therefore the conditions (4.34) can be written in the form

p>max|Res;|. (4.36)

1<i<n

In this case, the observer characteristic polynomial in accordance with the
binomial theorem has the form

n

N, (s)=(s+p)" :Z[rj]jpjs”“' =s"+nps" " +...+np" s+ p". (4.37)

j=0

Using the observer multiple real pole it ensures the convergence (4.30) with the
relative damping equal 1. If it is possible to have very suitable multiple pairs, the
selection of multiple pairs

~(j)p (4.38)
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will guarantee that the convergence (4.30) will be ensured with the relative damping

equal 1/+/2 =0.707.. This choice ensures fast convergence and also reduces the value of
p. The partial characteristic polynomial

s®+2ps+2p°.
a)
u X
> b == |
A
| (e
[
-
A
b)
u X
» b I

»
»

Observed
system

Luenberger
observer

[
»

Observed
system

Luenberger
observer

>>

[
»

<

(4.39)

Fig. 4.6 Block diagram of the Luenberger observer: a) original, b) transformed

corresponds to the pair (4.38).

The block diagram in Fig. 4.6a can be transformed in the equivalent block
diagram in Fig 4.6b, from which follows the operation of the observer. On the basis of

the difference of the output variables y(t) — y(t) the state estimate X(t) is corrected. It

is clear that the Luenberger observer is in fact the model of the observed system with
the running feedback correction
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X(t) = AX(t) +bu(t) + I[y(t) — §(t)]. (4.40)

It is in principle a control system which tries to nullify the difference y(t) — y(t),
and thus the state error vector g(t) = x(t) — X(t). Fig. 4.7 shows it clearly. The vector |
is therefore also called the Luenberger observer gain vector.

When designing the observer in accordance with the relations (4.24) and (4.27) it

is necessary to determine the unknown correction vector (Luenberger observer gain) I.
It can be determined by comparing the coefficients of the observer characteristic

polynomial N, (s)=det[sl —(A—Ic")] with the corresponding coefficients of the
desired observer characteristic polynomial N,,(s)=det(sl —A) at the same powers of

the complex variable s. In such a way the system of n linear equations is obtained for n
unknown components li of the vector |. For large n, this procedure is demanding.

Xo K .
u X Yy l y
» (ADb) ¢! B> | == (A,Db) ¢’ >
N g )~ — v
Observed Luenberger
system observer

Fig. 4.7 Interpretation of the Luenberger observer

The design of the observer can be easily solved if the model of the observed
system (4.1) has the canonical observer form (3.25)

%o () = Ay X, (8) +ou (D),

(4.41a)
y(t) =g %, (1),
where
) . 0 a1
O 1 ... 0 -a
A = 2, (4.41b)
0 0 ... 0 -a
0 0 ... 1 -a]|
b, =[by,0,,...,0, .0, 41", (4.41c)
¢, =[0,0,...,01]. (4.41d)

The canonical observer form can be obtained directly from knowledge of the
transfer function (3.22) or using the transformation (3.24)
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X, () =T, 'x(t), A, =T,*AT,, b,=T,™, c] =c'T,, (4.42)
where the regular transformation matrix of the order n [(nxn)]
To " = Qo (A G )Qop (ArCT) (4.43)

is given by the observability matrix of the observed system (4.1), i.e. (2.51) and the
matrix Q,, (A,,C,) is given by the relation (3.24b).

It is clear that by reason of the duality (3.28) it holds
Qo (A, C5) =Q (ALb;). (4.44)

The observer (4.24) for (4.27) can also be expressed in the canonical observer
form

Xo (1) = AR, (1) + byl + 1,y (1),

(4.45a)
§(8) = cg %, (1),
where
0 0 -a,
1 0 0 -a
_ Al
A - 0O 1 ... 0 a, (4.45b)
0 0 ... 0 -a,
0 0 .. 1 -a,]|

is the square observer matrix of the order n, in which the negative coefficients of the
observer characteristic polynomial (4.31) appear in the last column.

The block diagrams for the canonical observer forms are the same as in Fig. 4.6,
but all vectors and matrices must be provided with subscript "0".

In accordance with the relation (4.28) we can write

[0 0 ... 0 —a,-l,
1 0 ... 0 -a-I,
01 ... 0 -—a-I
A, =A,~1cl = 2o, (4.46)
0 0 ... 0 -a,,—l,,
0 0 .. 1 -—a,-l, |

From a comparison of the relations (4.45b) and (4.46) it follows
l,=a,-a_, pro i=12,...,n,
i.e. in accordance with (4.32) and (4.13b)
l,=a'-a, (4.47)
where |, is the observer correction vector in the canonical observer form.
Therefore (4.42) holds, it is possible to write
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Ly=T,"ly =
1=T,l,=T,@"-a). (4.48)

From the comparison of the characteristic polynomial of the closed-loop system
(4.4) [see also (4.6)]

N, (s) =det(sI — A, ) =det[sI —(4—bk")]
with the characteristic polynomial of the Luenberger observer (4.31) [see also (4.28)]
N, (s) =det(sl — A) =det[sl —(A—-Ic")]=det[sl —(A" —cI")]

it follows that for a determination of the Luenberger observer gain vector | the
Ackermann’s formula [see also (4.16)] can also be used

I” =[0,0,...,01][c, ATc,...,(A")"*c]*N,,(A) =
=[0,0,...,01][c,A"c,...,(AT)"'cI H[A" +a A" +...+a A+all].

or

I =N, (A)Qu(ACT) i |=

1
- (4.49)

=[A"+a A"+ . +aA+all]Q, (AT | |

1

Consider now, that the state space controller uses the state estimate X(t) for
control (Fig. 4.8), i.e.

X(t) = Ax(t) — bkT R(t) .
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- W—>,(t) " o Xol X(t) y(t)
Tk [@1 b [(e)dr PRI

Controlled

system A e

| (e
Luenberger 0 X X j(.)dr
observer ‘0
L‘ A e

State space_ ________________________ : ---------------------

controller kT

Fig. 4.8 Block diagram of a control system with a state space controller and
Luenberger state observer

Therefore the equality holds
—bk"X(t) =—bk™ x(t) + bk &(t)

we can write the state equation of the control system with state space controller and the
Luenberger observer in the form [see (4.6)]

%(t) = A, x(t) + bk &(t),
£(t) = Ae(t),

X (t T x(t
XO1 | Ay bk x(O (4.50b)
£(t) 0 A |e)
It is the upper block triangular matrix, whose characteristic polynomial is given
by the relation
N, (S)N, (s) =det(sl — A, )det(sl —A). (4.51)

This means that the dynamic properties of the control system with the state space
controller and the Luenberger state observers are mutually independent.

(4.50a)

or

It is the so called separation principle.

It is very important because the state observer and the state space controller can be
designed independently. We can design a state space controller that ensures the required
control performance and then we can separately design the Luenberger state observer,
which ensures the correct state variable estimates. A well-designed state observer
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deteriorates the resulting dynamics of a control system with a state space controller very
little.
Procedure:

1.  Check the controllability and observability of the controlled system (plant)
[relations (2.50) and (2.51)].

2.  Determine the coefficients of the characteristic polynomials N(s) and Nw(s)
[relations (4.2) and (4.31)].

3. On the basis of the pole of the control system with the largest absolute real part
determine the multiple pole (4.36) or multiple pairs of poles (4.38) in such a way
to ensure the sufficiently fast dynamics of the observer.

4.  Compare the coefficients of the observer characteristic polynomial
N, (s) =det[sl —(A—Ic")] with the corresponding coefficients of the desired

observer characteristic polynomial N, (s)=det(sl —A) at the same powers of

the complex variable s and the solution of the system of n linear equations is
obtained for n unknown components |; of the vector |. For large n, use the

transformation matrix (4.43) and the relation (4.48) or Ackermann’s formula
(4.49).

5. Verify by simulating the received estimates of the state variables

Example 4.3

For the control system with the state space controller from Example 4.1 it is
necessary to design the Luenberger state observer.

Solution:

The poles of the controlled linear dynamic system (4.17) are s, , = +1/2 therefore,
in accordance with the conditions of (4.34) — (4.36), we choose, e.g.
p=4 = p,=p,=-4.
The characteristic polynomial of the observer will be
N, (s)=(s+p)*=s’+85+16 =
a)=16, a, =8 = a' =[16 §[".

Method of comparison of coefficient
The system (dynamics) matrix of the observer is given by the relation (4.28)

e [ ]

1 1
Now we can calculate the characteristic polynomial of the observer (4.31)

N, (s) = det(sl — A) :{

s+1+l, -1 )
=s"+ls-2-1 +1,.
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We compare coefficients of both characteristic polynomials Ni(s) and Nw(s), i.e.

|, =8 8
= | = :

Method of transformation
We will use the relation (4.48) for a' =[16 8]" and a=[-2 0] :

0 11 O -11
O NSRS

adjiT,* 1(0 -1] |01
TOZ—_]_:_ = y
detT,* -1]-1 -1] |1 1

| 0 11(//16 -2 8
I=T,(a —a)= - = .
1 1)|| 8 0 26
We received the same result.

Ackermann’s formula
In accordance with (4.49) we can write:
_adjQg(AcT) 1

el el

1 0 _ 1 0] |10
Q,(AcT) = , Qp(AcT)y=—Sb 2 2 = ,
-1 1 detQ,(Ac’) 1|1 1| |1 1
2 | | -1 T 0
I =[A°+a,A+a,1]Q, (A, C )[J=
2 0 -11 1 0|||1 0}0 8
= +8 +16 =
0 2 1 1 0 1y||1 11 26
As we expected, we received the same result as in the previous two cases.
The system matrix of the observer for determined Luenberger gain vector | is

-1-1, 1 -9 1
A1 = = .
1-1, 1] |-25 1
The block diagram of the control system with state controller and the Luenberger

observer is shown in Fig. 4.9
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-25 1

kT

Fig. 4.9 Block diagram of control system with state controller and Luenberger
observer — Example 4.3

The step response (xo = 0) of the control system with the state controller and the
Luenberger observer is the same as without the observer (see Fig. 4.4).

Example 4.4

For the control system with state space controller from Example 4.2 it is necessary
to design the Luenberger state observer.

Solution:

In the Example 4.2 it was shown that the controlled system is controllable and
observable, and that its characteristic polynomial has the form

N(s) =det(sl — A) =s>+75* +14s+8=(s+1)(s + 2)(s +4),
where
s =-1s,=-2, s;=-4
are the controlled system poles and
a=8 a1=14,a2=7 = a=[8,14, 7]
are its characteristic polynomial coefficients or the vector of these coefficients.
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Since

max|si| = 4
1<i<3

it is possible to choose

P.=P, = p3:_p2_8

I.e. the observer characteristic polynomial and its coefficients are

N,,(s)=(s+ p)’ =(s+8)° =s® +24s” +192s +512 =

a, =512, a, =192, a) =24 = a' =[512, 192, 24]".

Method of comparison of coefficient
The observer system (dynamics) matrix is

1 0 -4] [y

A=A-Ic"=|2 -2 -2(-[,[-2 4 1]=

0 0 -4 |l

2,-1 -4, —1,-4
=|2l,+2 —4,-2 —1,-2|
oA, -4, —1,-4

After the unpleasant and time-consuming modifications we can determine the

characteristic polynomial of the observer
N, (s) =det(sl — A) =

=8% + (=2l + 4, + 1, +7)s® + (—4l, + 20, + 3, +14)s +16l, +16l, — 22I, +8.

Comparing the coefficients at the same powers of the complex variable s for both
of the observer characteristic polynomials, the system of linear algebraic equations with
respect to unknown components Iz, I> and Iz of the observer correction vector | was

obtained, i.e.
773
161, +16l, - 22, =504] 54
-4l + 201, +3I; =178, =1, :%, = |=
-2l +4l, +1;, =17 32
I, = 5

Method of transformation
In accordance with (4.43) and (4.44) there is obtained
a, a, 1 14 7 1

w(AC)=la, 1 0/=|7
1

0].
1 0 O 0

1
0

The transformation matrix can now be determined

[ 773 ]

54
332

27 |

%

9
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16 16 -22
T, =Q (A, c0)Q,u(AcT)=|-4 20 3 |=
-2 4 1
1 13 61|
54 54 54
o L 7 5]
216 108 54
1 2 8
18 9 9|

After substituting into the relation on the observer correction (gain) vector I, the
same result
_E_
54
332
27 |
.
9

| =To(a' —a)=

is obtained.

Ackermann’s formula
We use the Ackermann’s formula (4.49) and the partial results from Example 4.2:

343 0 -372
N,,(A) =[A®+24A° +192A+5121]=| 254 216 —288],

0 0 64
(8 1 1]
2 4 17T gg 9 54
7 1
_1A’CT=10 g 4| =|=2 L 2|
Qu (ACT) 54 72 216
-26 16 -8 1 1 1
9 6 18]
773
0 54
1= N, (A)Q;:(Ac) 0] =| 3321,
27
| 32
9

We see that in all three cases we obtained the same results.

The step response of the control system with the state space controller and the
Luenberger state observer and without the Luenberger state observer is shown in Fig.
4.10, from which it is clear that the designed observer operates correctly.
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s () A
»ul®) wit)

without observer

. with observer

8 t [s?

Fig. 4.10 Influence of the Luenberger state observer on the step response of a control
system with a state space controller — Example 4.4

4.3 Integral state space control

A state space controller is able to ensure the required pole placement of a control
system, this means that it is able to ensure its dynamic properties but it cannot eliminate
a harmful effect of disturbance variables.

If disturbances v(t) exist, the state model of the controlled system has the
following form

X(t) = AX(t) + bu(t) + Fv(t), x(0)=Xx,,
y(t) =c" x(v),

where v(t) is the disturbance vector of dimension p, F — the disturbance matrix of
dimension (nxp).

(4.52)

In order to remove the disturbance v(t), we add another loop with the I or PI
controller, see Fig. 4.11, where the K; is the weight of the integral component. It is
obvious that the number of poles is increased by 1.

In accordance with Fig. 4.11 and relations (4.52) the control system with the
integral state space controller can be described by the state model (the time t we will not

express)
' —bk" 0 F
[_x }:[A ok bK'}{ X }{ }w{ T}v (4.533)
Xn+l —C 0 Xn+1 1 0

y=lc" O]LX } (4.53b)
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v(t)
— =
. Xo
w(t) o ! u(t lx(t) y(®)
——@— |1 K@i b —»é—» [()A7 Rt T >

kT_

Fig. 4.11 Block diagram of control system with state space controller and added loop
with | controller for removing disturbances

In order to exploit the results of the previous sections 4.1 and 4.2 we rewrite the
system matrix (4.53)

s B
K b K

and we get the extended state model of the controlled system
X, = AX, +bu+Fv,

T
Yy =G X,

Xe{xxj, A“:{—? 8} b, =M, I =lc" o (4.55b)

n+

(4.55a)

where

The extended controlled system has the property that, when we use

u=kIx, =[k" -K ][ nj

we get the equation (4.53a)

The characteristic polynomial of the extended controlled system (4.55) is given by
relation

N.(s) =det(sl —A,)=s(s—5s,)(S—S,)...(s—5,) =

o (4.56)
+a, S +...+a45S = a4, =[0,4 e1r e2re ey en]

and the desired characteristic polynomial of the closed-loop control system is
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NeW(S):det[SI_(A ~bk;)]=(s=8/)(s-57)...(s =571 =

=s"™t+als" +...+als+aly = a =[ak,ay,....a’]’

en 3

(4.57)

where
K =[k" -K,] (4.58)

is the vector of the feedback state space controller and s, are the required poles of the
closed-loop control system (i=1, 2,...,n +1).

Procedure:

1.  Check the controllability and observability of the controlled system (plant)
[relations (2.50) and (2.51)].

2. Modify the original state model of the controlled system (4.52) to the
extended state model (4.55).

3. Formulate the requirements for the control performance and express it by
the desired pole placement (i.e. by the characteristic polynomial) of the
closed-loop control system for the extended state model (4.55).

4.  Determine the coefficients of the characteristic polynomials Ne(s) and New(s)
[relations (4.56) and (4.57)].

5.  Determine the extended feedback vector k] (4.58) by any method from the
section 4.1.

6.  Verify the received control performance by a simulation.

Example 4.5
For DC motor from Example 3.2

de(®)| 1o 1 o
dt fa(t)] | O 0
M =10 _b_m C_m a)(t) + 0 Ua(t)_ i m|(t)
dt J.oJ |, J,
di_ (t) ¢, R, |h® n 0
ST a

it is necessary to design a state space control without and with an integration for the
angle of the motor shaft a(t) for the parameters: Jm = 0.02 kg m?, bm = 0.01 N-m-s-rad?,

Cm = Ce = 0.05 N-m-Al (V~s~rad'1), La =0.2 H, Ra = 1 Q. For the step change of the
desired angle aw(t) the course of a(t) is required without overshoot.
Solution:

Because the angle a(t), the angular velocity w(t) and the armature current ia(t) are
relatively well directly measurable quantities, the observer will not be proposed.

For greater clarity we use standard symbols

X\ =, X =, X3=Iy, U=U,, V=m,
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and by substitution of the numerical values of the DC motor parameters we get its state
model in the form

X =AX+bu+ fv,
y=c'Xx,
where
0 1 0 0 0
A=|0 -05 25| b=|0| f=/-50], c"=[1 0 0]
0 -025 -5 5 0

We verify the controllability and the observability:
0 O 125
Q. (Ab)=[b, Ab,A’b]=|0 125 -68.75| detQ, (A b)=-781.25=
5 -25 121.875

The DC motor is controllable.
c’ 1 0 0
Q,(Ac)=|c’A|=[0 1 0| detQ,(Ac')=25=
c' A’ 0 -05 25
The DC motor is observable.
We determine the characteristic polynomial of the DC motor

S -1 0
N(s)=det(sl —A)=[0 s+05 -25=s>+555*+3.1255 =
0 025 s+5

s, =0, s, =-0.6435, s, =-4.8565,
a,=0,a=3125 a,=55= a=[0 3.125 55].

State space control without integration

Due to the requirements for the course of angle a(t) without overshoot, we choose
the multiple pole of the closed-loop control system s;", ; =-5 and we get the desired

characteristic polynomial
N,,(s)=(s+5)° =s® +15s* + 755 +125 =
ay =125, a" =75, a) =15 = a" =[125 75 15]".

For the design of the state space control without the integration we use e.g. the
relation (4.14):

a a, 1] [3125 55 1
Ql(A.b)=|a, 1 0|=| 55 1 0,
1 0 0 1 0 0
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125 0 O
T.=Q,(Ab)Q,(A.b)=| 0 125 0,
0 25 5
0.08 0 0
Tc‘1= 0 0.08 0
0 -0.04 0.2

(@v-a) =[i5 71.875 9.5,
K" =(@"-a] T.*=[10 537 1.9].
We determine the system matrix of the closed-loop control system
0 1 0

A,=A-bk"= 0 -05 25
-50 -271 -145

We can easily verify that eigenvalues of the matrix Aw are s,,; =—5, i.e. they are

really desired poles of the closed-loop control system.
We determine the input correction on the basis of the relation (4.9)
1
kW - m - 10 .

The block diagram of the state space control without the integration of the DC
motor is shown in Fig. 4.12.

_ X
w(t) =, t?N’(t u(t) =u,(t) X(t) le(t) y(t) = a(t)
— kg b [(@d>Q=r» ¢ —
A | G—
kT | —

Fig. 4.12 Block diagram of state space control without integration of DC motor
— Example 4.5

The DC motor responses with the state space control without the integration for
the step change of the desired angle w(t) = aw(t) = #(t) and the step change of the load
torque v(t) = m(t) = 0.1x(t — 5) is shown in Fig. 4.13.
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State space control with integration
In this example for simplicity we also select the multiple pole of the closed-loop

control system s, ; =5, i.e.
N, (s) = (s +5)* = s* +20s® +150s* +500s + 625 =
a¥ =625, a% =500, a¥% =150, a%, =20= a“ =[625 500 150 20]".

Now we must consider an extended state model of the DC motor in the form
(4.55), i.e.

0 1 0 0 0
Ae:{A O}: 0 -05 25 0 b:O
-¢" 0] |0 -025 -5 0| ° |5]
-1 0 0 0 0
c= 0 0 0]
We determine the characteristic polynomial
s -1 0 O
Ne(s):det(sI—AE)zg SJZO: ;i: 8:5“+5.553+3.12552 -
1 0 0 s
a,=0, a,=0, a,=3125 a,=55=4a,=[0 0 3125 5.5].

For the design of the state space controller
K =k" -K,]
we also use the relation (4.14):
0 0 125 —68.75

0 125 -68.75 339.0625

b)=[b,Ab A% Ab]= ’
Quo (A0 =0 Ab ADLABT= o) g8 5901875

0 0 0 -125
8y 8, 8, 1 0 3125 55 1
a, a, 1 0| [3125 55 1 0
A ,b _ e2 e3 — )
Qco(Aec ec) ae3 1 0 55 1 0 0
1 0 0 O 1 0 0 0
0 125 0 O
0 0 125 0
T = b,)Q. (A, b)) = :
c Qco(Ae e)Qco(Aec ec) 0 0 25 5
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0 0 0 -008
, |008 0 0 0
10 08 0 0

0 -04 02 O

(a¥-a,] =[625 500 146.875 14.5],

K =(a"-a T *=[40 1117 29 -50].
The block diagram of the state space control with the integration of the DC motor
is the same as in Fig. 4.11.

The block diagram of the state space control with the integration of the DC motor
is shown in Fig. 4.11.

The DC motor responses with the state space control with the integration for the
step change of the desired angle w(t) = aw(t) = #(t) and the step change of the load
torque v(t) = m(t) = 0.1x(t — 5) is shown in Fig. 4.13.

The comparison of the courses in Fig. 4.13 shows unambiguous priority of the
state space control with the integration although there is a response slowing. The
response slowing is due to an increase of the closed-loop control system order.

A D= a0 — with integration

— — — without integration

Fig. 4.13 Comparison of responses of DC motor with state space control without and
with integration — Example 4.5
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APPENDIX A

Linearization

Linear dynamic systems are basically an idealization of real dynamic systems.
One of the most important requirements is that the system is working in "close"
surroundings of the operating point. Then the mathematical model of this dynamic
system can be considered as linear in this surroundings.

When the mathematical model of the nonlinear dynamical system is given by
relation (2.8) in the state space, i.e.

X(t) = g[x(®),u(®)],
y(®) = h[x(t),u(®)],

then it is necessary to provide the linearization. We use expansion in Taylor series and
we consider only the first linear terms of this series, then we can write

AX(t) = ATAx(t) +bAu(t) } (Ala)
Ay(t) =c’ Ax(t) + dAu(t),
where

AX(t) = X(t), AX(t) = x(t) — Xq ,

Au(t) =u(t) -y,

A:a—g : b:a—g , (A.1b)
oX|, ou|,

C= @ , d= @ .
oX|, ouly

In all cases it is assumed that the partial derivatives are calculated for the
operating point, and that they exist and they are continuous.

The transition from incremental values of the variables to the absolute values of
the variables is given by the relations

y(©) =y, +Ay(t), }

u(t) =u, + Au(t). (A2)

Throughout the text, unless otherwise stated, all mathematical models are
considered that they are working in the operating point, i.e. we use incremental
variables, although it is not explicitly stated, and the variables are not designated as
incremental.

For more details see e.g. [deSilva 2009; Mandal 2006; Vite¢ek, Vite¢kova 2013].
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APPENDIX B

Cayley-Hamilton theorem
Every square matrix A of order n satisfies its own characteristic equation

det(sl —A)=s"+a, ,s" " +...+aS+a,, (B.1)
A" +a A"+ +aA+a)l =0. (B.2)
For more details see e.g. [Ogata 2010; Mandal 2006].

Sylvester interpolation formula
The convergent infinite series [see e.g. (3.40)]

f(A) = o A (B.3)
i=0

of square matrices of order n can be uniquely expressed in the finite series of degree
n—1orless

uwzf%N, (B.4)
i=0

where the coefficients o; are functions of the eigenvalues of the matrix A. For more
details see e.g. [Ogata 2010; Mandal 2006].
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APPENDIX C
Consider the linear dynamic system with the state model
X(t) = Ax(t) + bu(t), X(0) = X, , (C.1a)
y(t) =c"x(t) + du(t), (C.1b)

whose state response is given by the relation (3.43)

t

x(t) =e™ x(O)+eAtje’A’ bu(z)dr (C.2)
M 0
free state
response forced state

response

and the output response by the relation (3.44)

y(t)=c" e x(0)+c e™ jeA’ bu(r)dz + du(t). (C.3)

free output
response

forced output
response

Controllability

A linear dynamic system is controllable if there is such a control (input) u(t)
which transfers the system from any initial state x(to) to any final state x(t1) in a finite
time t1 — to.

Most often it is selected to = 0 a x(t1) = 0.

It is clear that for the controllability the output equation (C.1b) [(C.3)] has not
significance and therefore it is considered only the equation (C.1a) and its response
(C.2)

In accordance with (C.2) for the final state x(t1) = 0 it holds

tl
0=e" x(0)+e™ [e* bu(r)dr =
0

[
x(0) =—[e"" bu(z)dz. (C.4)
0
Applying Sylvester interpolation formula (B.4)
n-1 .
e =Y a(r)A, (C.5)
i=0

and substituting into (C.4) then we get
4t nt

x(0) = —jZai (r)A'bu(r)dr =

0i=0

x(0) = an‘bﬁi , (C.6a)
i=0
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B =—J () dr. (c.60)
The relation ZC.Ga) can be written in the form
Po
x(0) = o, Ab... A" 7 | =
Poa
Po
X(©) = Qu(Ab) | 71 |, ©7)
P
where
Qu(Ab)=|b, Ab,..., A™] (C.8)

is the square controllability matrix [see relation (2.50)].

From the relation (C. 7) it follows that in order to determine fo, f1,..., fn-1, the
controllability matrix (C. 8) must be invertible, i.e. it must have the rank n. Since it is a
square matrix, its determinant must be zero.

rank Q, (A/b)=n < detQ,(Ab)=0. (C.9)
This follows directly from the known relation for inversion of a square matrix

_1(A, b) _ adj Qco (A! b)

= HotO- (AD) detQ,, (A, b) =0 . (C.10)

Observability

A linear dynamic system is observable, when based on the knowledge of the
courses of the control (input) u(t) and output y(t) on the finite interval t1 — to it can be
determined the initial state x(to) = Xo.

If we know the initial state x(to), then we can easily determine the state x(t) for
any time t > to.

Most often we choose tg = 0.

Because the control (input) u(t) produces some known (forced) response, it is
clear that we can choose u(t) =0, i.e. we can consider the autonomous linear dynamic
system

X(t) = Ax(t), X(0) = X, , (C.11a)
y(t) =c"x(t) . (C.11b)
If we determine for it the initial state x(0), then based on the relation [see (3.43)]

x(t) =e”™ x(0) (C.12)
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we can determine any state x(t) for t>0 and from the relation (C.11b) also the
corresponding output (3.44)

y(t) =c" e™ x(0). (C.13)
We apply the Sylvester interpolation formula (B.4)
n-1 .
e =S o (A (C.14)
i=0

and we obtain

y(t) = cT(”zlai A‘jx(O) = (zl a,c’ Ain(O) =
i=0 i

CT
c'A
=[ey, ... 00 4] : x(0) =
CT An—l
y(t) =[ag .-, 41Qq (A CT)X(0) (C.15)
where
CT
c'A
Qp(Ach)=| ~ 7 |=[c,ATc,...,(A")" T (C.16)
CT An—l

Is the square observability matrix [see relation (2.51)].

Similarly to the controllability in order to determine on the basis of the relation
(C.15) the initial state x(0), the observability matrix (C.16) must be invertible, i.e. it
must have the rank n. Since it is the square matrix, its determinant must be zero

rank Q,,(A,c")=n < detQ,, (A,c')=0. (C.17)

We can get the same conclusion in other way.
For the autonomous linear dynamic system (C.11) we can write

y(0) =c"x(0),
y(0) = c" x(0) = c" Ax(0),
§(0) = c" Ax(0) = c" A%x(0),

y"(0) =c" A"?x(0) = c" A"x(0),

or
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y©@) | | '

YO _| A L) =
V) oA

y(0) |

O g, a0, c18)
_y‘”‘i’(O)_

i.e. in order to determine the initial state x(0) from (C.18) for the observability matrix
Qub(A,cT) it must hold (C.17).

For more details see e.g. [Ogata 2010; Mandal 2006; Friedland 2005].
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APPENDIX D

Ackerman's formula
For the controllable linear dynamic system with the state model
X(t) = AX(t) + bu(t) (D.1)

it is necessary to design a state space feedback control represented by a vector k™ which
ensures the desired characteristic polynomial of the closed-loop control system in the
form

N, (s)=det(sl —A,)=s"+a’,s"" +...+a/'s+ay, (D.2)
where
A, =A-bk'. (D.3)

In accordance with the Cayley-Hamilton theorem (Appendix B) every square
matrix must satisfy its own characteristic equation

NkW(AN):O7

Al +a, At +a)'A, +ayl =0. (D.4)

We substitute (D.3) into (D4) and then we modify it. For clarity first we calculate
powers of the matrix Aw:

A2 = (A—bk")(A-bk")= A% — Abk" —bk" A, (D5)
A = (A-bk")(A? - Abk™ —bk" A,) =

(D.6)
= A’ - A’bk™ — Abk" A, —bk" AZ,
Al = A" — A"k’ — A" bk A, —...— AbkT Al —bk" Al (D.7)
Now we substitute (D.3), (D.5) — (D.7) into (D.4), we denote
N, (A)=A"+a’ A" +...+a 'A+a]l (D.8)

and then we modify the remaining relations so we put b, Ab, A%b etc. outside brackets
and we get

N (A) -b@a'k" +ayk" A, +...+a" KT A2 +k" Al +
—Ab(ayk’ +alk" A, +...+al kTA At KTAT) 4+ (D.9)
—A"%b(ar kT +k"A,)+ A"k =0.

We write down this relation in the matrix form
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N

w(A) =[b, Ab,..., A"*b, A""b]

Ca'k" +a'k"A, ... +KTAM ]
ayk’ +ayk' A, +...+ar kTA?

a’ k" +k"A,
kT

The first term on the right side is the controllability matrix
Q. (A b)=[b, Ab,..., A"%b, A" 0] ,

which is square and nonsingular [system is controllable, detQ. (A b)==0], and
therefore its inverse exists. Thus we can write

Ca'k" +a'k"A, ... +KTAM ]
ayk' +alk" A, +...+a" kT A

a’ k' +k"A,

kT

=Qx (A DN, (A).

Since we are interested in only vector k™ (last row), so we get

kT

=[0,0,....011Q.2 (A, b)N,,,(A) .

(D.10)
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APPENDIX E

Desired pole placement

When designing a state space control the pole placement in the left half-plane of
the complex plane s is used. The influence of the conjugate pole pair on the step
responses of the linear dynamic system of the second order is shown in Fig. E.1.

It is assumed that the linear dynamic system of the second order has the transfer
function

Y (s) a)g

G(s)=—== (E.1)
U@s) 2 +Zés+a)§

@y
or the state model
X (1) = X, (1), % (0) =0,
o (1) =~ (1)~ 222 X, () + (D), %,(0) =0, (E2)
),

0
y(t) = a)gxl (t)!

where wo is the natural angular frequency (undamped oscillations), & — the coefficient
of relative damping.

For the assessment of step responses in Fig. E.1 it is appropriate to establish other
indices

a=Ew, ©=w,1-E, K:ymy_(—:;g.o), (E.3)

i.e. a — the damping (degree of stability), @ — the angular frequency (damped
oscillations), x — the relative overshoot, ym — the maximum value of the step response,
y(e0) — the steady-state of the step response.

On the basis of the influence of poles in the left half-plane of the complex plane s
on the step response (Fig. E.1) it can be defined so-called admissible region for control
system poles for the desired damping aw and relative damping &w accordance with Fig.
E.2.

The poles lying the closest to the admissible region boundary are called the
dominant poles (sometimes as the dominant poles are thought the ones which are the
closest to the imaginary axis).

Further it is assumed that the poles which are located far away from the
admissible region boundary have a negligible influence on the control system
behaviour.

The admissible region boundary in Fig. E.2 is determined by the following
relations

> (3+5)tl | (E4)

S

w S arccosé,,. (E.5)
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where ts is the settling time, i.e. the time when the output variable y(t) enters in the band
with the width 2A, i.e. y(e0) + A, where the control tolerance A = dy(); 6 = 0.01 + 0.05.

he) A

v

~ ¥

i) A

Im A
®)

A

2z
0 1
h(t) F
Im A @
/ @ = arccosé,
2
4 1/ 1+xr

Re

}»
v

b
¢

Fig. E.1 Influence of complex conjugate poles of the second order system on its step
responses
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! constant &y
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Fig. E.2 Determination of admissible region for control system poles

In the relation (E.4) is the smaller number considered in the case of a single
dominant real pole and the greater number in the case of double dominant real pole. The
first relation is determined for the control tolerance about 5 %. The second relation
(E.5) is based on the assumption of the maximum permissible relative overshoot 25 %,
ie.

k<025 = £ >0404 = ¢, <66° (1.15 rad). (E.6)

In the design of a state control they are often used the standard binomial forms
with the multiple real pole s =-a, a> 0 (Fig. E.3):

N, (s)=(s+a)", (E.7)
n=2 s?>+2as+a?,
. 3 2 2 3
n=3 s°+3as“+3a‘s+a’, (E.8)
n=4 s*+4as®+6as?+4a’s+a’,
n=5 s°+5as*+10a%s® +10a’s? +5a*s+a°.
The integral criterion ITAE is very popular
lirage = [tje(t)|dt —min . (E.9)
0

The integral criterion ITAE litae (ITAE = Integral of Time multiplied by
Absolute Error) includes time and control error, and therefore when it is minimized then
both the absolute control area and the settling time ts are simultaneously minimized. The
integral criterion ITAE is very popular although its value can be determined in most
cases only by simulation.
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Original coefficients of a desired characteristic polynomial Nw(s) which are given
e.g. in [Graham, Lathrop 1953] were obtained on the basis of an analog simulation and
later they were refined by a digital simulation [Cao 2008]. New standard forms give a
substantially smaller value of the integral criterion ITAE (E.9) primarily for higher
degrees of characteristic polynomials.

New coefficients of characteristic polynomials for the criterion ITAE (Fig. E.4):

2

n
n=3
n=4
n=>5

s? +1505as + a2,

s® +1783as? +2,172a%s + a°,

s* +1953as® + 3,347a%s? + 2,648a%s + a*,
s® +2,068as* +4,499a%s® + 4,675a%s2 + 3,257a%s + a°.

(E.10)

The constant a in the relations (E7), (E.8) and (E.10) expresses the time scale. Its
choice adapts the standard form of the characteristic polynomial to the real system.
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Fig. E.3 Step responses for binomial standard forms (E.8) fora=1
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Fig. E.4 Step responses for ITAE standard forms (E.10) fora=1
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Fig. E.3 and E.4 show the step responses for binomial and ITAE standard forms
fora=1.
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