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PREFACE

The educational module the ,,Closed-loop Control of Mechatronic Systems® is
devoted to the bases of automatic control. The main emphasis is put on the principle of
a negative feedback and its use in the control of mechatronic systems. It covers the most
important area of analog automatic control and very briefly also describes digital
control.

Since the educational module is concerned with the basic concepts automatic
control, any precise proofs in the module are therefore not given. For deepening and
extending the study material the below mentioned references are recommended:

Dorr, R.C., BisHor, R. Modern Control Systems. 12" Edition. Prentice-Hall,
Upper Saddle River, New Jersey 2011

FRANKLIN, G.F., POWELL, J.D. — EMAMI-NAEINI, A. Feedback Control of Dynamic
Systems. 4™ Edition. Prentice-Hall, Upper Saddle River, New Jersey, 2002

LANDAU, I. D., ZiTo, G. Digital Control Systems. Design, Identification and
Implementation. Springer — Verlag, London, 2006

Nisg, N. S. Control Systems Engineering. 6" Edition. John Wiley and Sons,
Hoboken, New Jersey, 2011

The authors give thanks to Mr Mark Landry for the English language correction.

The textbook is determined for students who are interested in control engineering
and mechatronics.
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LIST OF BASIC NOTATIONS AND SYMBOLS

a, aj, b, bj,... constants

a coefficients of left side of differential equation, coefficients of transfer function
denominator

A, A;, B, B;  constants, coefficients

A(a)):modG(ja)):|G(ja))\ frequency transfer function modulus, plot of A(w) =
magnitude response

Ao modulus of open-loop (control system) frequency transfer function
Ac modulus of controller frequency transfer function

Ap modulus of plant frequency transfer function

Awy  modulus of closed-loop control system frequency transfer function

A system (dynamics) matrix of order n [(nxn)]

b set-point weight for proportional component (term)

o] coefficients of right side of differential equation, coefficients of transfer function
nominator

b input state vector of dimension n

C set-point weight for derivative component (term)

c output state vector of dimension n

C capacitance

d transfer constant

e control error

ev(0) steady-state error caused by disturbance variable
ew(o0) steady-state error caused by desired (reference) variable
f general function
f=2 frequency
2r
g(t)  impulse response
ge(t) plant impulse response
G(s) transfer function, transform of impulse response
G(jw) =P(w)+ jQ(w) = A(w)e ' frequency transfer function, plot of G(jw) =
frequency response
Gk filter transfer function
Go open-loop (control system) transfer function
Ge controller transfer function
Gp plant transfer function
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Gy  disturbance variable-to-controlled variable transfer function
Gy  disturbance variable-to-control error transfer function

Gwy  closed-loop (control system) transfer function

Gwe desired (reference) variable-to-control error transfer function
h(t)  step response

hp(t) plant step response

hy(t) step response caused by disturbance variable

hw(t) step response caused by desired (reference) variable

H; Hurwitz determinants (subdeterminants, minors)

H Hurwitz matrix

H(s) transform of step response

[ interacting coefficient, current

l; integral criteria of control performance (i = IE, IAE, ISE, ITAE)

j=v-1

k relative discrete time

imaginary unit

Ki gain

KT discrete time

Ko  weight of controller derivative component (term)

K weight of controller integral component (term)

Kp controller gain, weight of controller proportional component (term)
Kpc  ultimate controller gain

k vector of state space controller
L inductance
L operator of direct Laplace transform

L™ operator of inverse Laplace transform

L(w) = 20l0gA(w)  logarithmic modulus of frequency transfer function

Lo logarithmic modulus of open-loop (control system) frequency transfer function
Lc logarithmic modulus of controller frequency transfer function

Lwy  logarithmic modulus of closed-loop (control system) frequency transfer function
I Luenberger observer gain vector, correction vector

m degree of polynomial in transfer function nominator, motor torque, mass

ma  gain margin

m, load torque
m, = 20log ma logarithmic gain margin
M polynomial in transfer function nominator (roots = zeros)
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Ms maximum value of sensitivity function modulus

n degree of characteristic polynomial, degree of polynomial in transfer function
denominator, dimension of state variable vector x

N characteristic polynomial or quasipolynomial, polynomial or quasipolynomial in
transfer function denominator (roots = poles)

N(jw) Mikhailov function (hodograph, characteristic)

Np(w) = ReN(jw) real part of Mikhailov function

No(®) = ImN(j ) imaginary part of Mikhailov function
p number of controller adjustable parameters

P(w) = ReG(jw) real part of frequency transfer function
pp proportional band

q order of integral system, control system type

Q(w) = ImG(jw) imaginary part of frequency transfer function
Qc  controllability matrix of order n [(nxn)]

Qob  Observability matrix of order n [(nxn)]

r order of derivative system

R resistance

s=a+jo  complex variable, independent variable in Laplace transform
S, roots of polynomial with complex variable s

S complementary area over step response

S(jw) sensitivity function

t (continuous) time

tm time of reaching value y,, (peak value)

tr rise time

ts settling time

t, =%time corresponding to phase ¢

2

T period

w
T sampling period, period
Tq time delay (dead time)
To derivative time
T integral time
Tic ultimate integral time

Ti (inertial) time constant



VITECEK, A., VITECKOVA, M. Closed-Loop Control of Mechatronic Systems

T =57 ultimate period

Th substitute time constant

Tp transient time

Ts summary time constant

Ty substitute time delay (dead time)

T(jw) complementary sensitivity function

Te, To transformation matrices of order n [(nxn)]

u manipulated variable, control variable, input variable (input), voltage
ur formed (stair case) manipulated variable

v disturbance variable (disturbance)

W desired (reference, command) variable, set-point value

X state variable (state)

X state vector (state) of dimension n

y controlled (plant, process) variable, output variable (output)
Ym = Y(tm) maximum value of controlled variable (peak value)
Yy regulatory response

Yw Servo response

YT transient part of response

Ys steady-state part of response

z impedance

a stability degree, coefficient in DMM, minimum segment slope

a=Res real part of the complex variable s

yij coefficient in DMM, maximum segment slope
y phase margin

o relative control tolerance

ot)  unit Dirac impulse

A difference, control tolerance

n(t)  unit Heaviside step

w = 2xf angular frequency, angular speed
w=1Ims imaginary part of complex variable s

0N cut-off angular frequency

T .
W, =— ultimate angular frequency
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gain crossover angular frequency

(g
@ phase crossover angular frequency
R resonant angular frequency

o natural angular frequency

o(w) = arg G(j w) phase of frequency transfer function, plot of ¢(w) = phase
response

@o phase of open-loop (control system) transfer function

& relative damping
K overshoot
Tj time constant

Upper indices

* recommended, optimal
-1 inverse
T transpose

Symbols over letters
(total) derivative with respect to time
A estimation
Relation signs
~ approximately equal
= after rounding equal

>

correspondence between original and transform
= implication

S equivalence

Graphic marks

single zero

double zero

single pole

double pole

Men e

nonlinear system (element)

linear system (element)
single variable (signal)

H

multiple variable (signal), disrete (digital) variable (signal)

10
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% summing node (filled segment expresses minus sign)

Shortcuts
arg argument
dB decibel

const constant

dec  decade

det  determinant
dim  dimension
Im imaginary, imaginary part
lim  limit

max maximum
min  minimum
mod  modulus

Re real, real part
sign  sign

DMM desired model method

DOF degree of freedom

GGM good gain method

MOM modulus optimum method (criterion)
QDM quarter-decay method

SIMC Skogestad internal model control

SOM symmetrical optimum method (criterion)
TLM Tyreus — Luyben method

UEM universal experimental method

ZNM Ziegler — Nichols method

11
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1 INTRODUCTION TO CLOSED-LOOP CONTROL

We meet control all the time. We can find control systems in every complex
equipment or machine, which more often operate in a closed-loop. These systems are so
common that we aren’t often conscious of their existence. For example, today’s
compact cameras contains automatic focusing, automatic image stabilization, automatic
white balancing, automatic aperture and shutter setting, automatic tracking of an object,
etc. Home appliances such as radios and televisions, refrigerators, freezers, washing
machines, dryers, microwave and electric ovens, deep fryers, electric irons, room
thermostats, etc., also contain simple or more complex control systems.

Control systems can be found in modern toys, such as remote controlled cars,
boats, helicopters, planes, etc. Advanced control systems are present in today's means of
transport, i.e. cars, boats, airplanes, and of course various military technology,
equipment and weapons.

Most of these systems can be included in a very broad group of mechatronic
systems, which are characterized by the synergetic integration of the advantages and
characteristics of various branches, such as mechanics, electromechanics, electronics,
cybernetics, as well as technology and mechanical design.

We will explain the control problem in an open-loop control and closed-loop
control on a simplified example of the angular speed (rotational speed) control of a
direct current (DC) motor with permanent magnets, see Figs 1.1 and 1.2, where: w(t) is
the actual angular speed of the motor shaft [rad s™], ww(t) — the desired angular speed of
the motor shaft [rad s™], u(t) — the motor armature voltage [V], uu(t) = k,mu(t) — the
output voltage of the setting device [V], u,(t) = k.o (t) — the output voltage of the
tachogenerator [V], k,, — the tachogenerator gain [V s rad™], m(t) — the load torque
[N m].

Open-loop m, (t)
Actuator !
controller Plant
@y, (1); Setting | Control | ! Voltage | . DC :ﬂ)(t)
! device | device Lo source o motor

Fig. 1.1 Open-loop speed control of a DC motor
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m, (t)
Conroller &®=U,0)-u,@  Actuator 0 ™ l plant
e (0 = ie e
w Sett!ng Control i N VOltage i % DC oy
! device ®' device |[! | source |[! | motor !
Comparison
device U, (1) i| Tacho- |
i | generator |1
! ! Feedback

Fig. 1.2 Closed-loop speed control of a DC motor

The setting device is often added to the control device and then both devices form
the open-loop controller (Fig. 1.1) or the (closed-loop) controller (Fig. 1.2).

The control objective consists in the fact that at the actual angular speed of the
motor shaft (plant, process) w(t) at each time t was kept on (ideally equal to) the
desired angular speed w.(t) regardless of the varying load torque m(t), i.e.

o(t) > o, (t). (1.1a)

It is obvious that the control objective (1.1a) can be expressed in the equivalent
form

e(t) =a,(t) - o) >0, (1.1b)
where e(t) is the control error.

In the open-loop control (Fig. 1.1) the controller must generate via the voltage
source (actuator) such the armature voltage u(t) in order for the angular speed of the
motor shaft w(t) to approach the most the desired angular speed wy(t). It follows from
this that the DC motor properties must be very well known. Any inaccuracy in the
knowledge of motor properties appears in angular speed w(t). Also it is obvious that the
controller cannot remove the influence of the load torque my(t) on the angular speed
w(t). The load torque my(t) causes the irremovable disturbance.

For that reason the open-loop control can be only used for very simple control
tasks.

These simple open-loop control systems are e.g. in street traffic lights, washing
machines, dryers, microwave and electric ovens, etc. The control task is set by the
choice of preprogrammed operating modes. The open-loop controller contains simple
and most often logical systems.

In the closed-loop control (Fig. 1.2) the control error
eu (t) = uw(t) - ua) (t) = ka)a)w(t) - kwa)(t) = ka)e(t) (12)

is created and the controller tries to remove it by generating the suitable armature
voltage u(t) by means of a voltage source (actuator).

13
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It does not matter if the control error (1.2) was caused by lack of motor behaviour
or its change or by actuating the load torque m(t). It is important that the contoller has
such ability to always try as quickly as possible to minimize, preferably to completely
remove the control error (1.2).

The tachogenerator (sensor) in the feedback (Fig. 1.2) generates in its output the
voltage

0, ® =k, o) (L3)

and it is obvious that its dynamic behaviour would be negligible. The accuracy of the
relation (1.3), therefore the accuracy of the tachogenerator (sensor) determines the
resulting control accuracy. Control accuracy cannot be higher than sensor accuracy
IS.

From the above mentioned it follows that the closed-loop control is much better
than the open-loop control. That is why we will further deal with closed-loop control.

Since the feedback rises in the control system in Fig. 1.2, the closed-loop control
is called the feedback control or the regulation. It is clear that the feedback must be
negative.

The block diagram of the closed-loop control system, i.e. the feedback control
system in Fig. 1.2 is substituted for purposes of its analysis and synthesis by the
simplified diagram in Fig. 1.3.

l v(©) Vl(t)l
wit) e(t) =w(t) - y(t) u()

y(t)
—> Controller —>®—> Plant —>®—“—>

Fig. 1.3 Block diagram of the closed-loop control system

The setting and control devices create the controller. The plant (in our case a DC
motor) is controlled machinery or a process. The actuator and the sensor are often added
to the plant. Sometimes these devices are added to the controller. It depends on the
realization of all elements of the feedback control systems.

Disturbance variables are aggregated to one or two disturbance variables, e.g. v(t)
and vy(t). The desired (reference, command) variable is marked as w(t) and the
controlled (process) variable as y(t). The controller output variable u(t) is called the
manipulated (actuating, control) variable.

The control objective for the control system in Fig. 1.3 can be expressed in the
form

y(t) = w(t) (1.4a)
or equivalently
e(t) »0. (1.4b)

14
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From both relations two controller functions follow. The first function consists in
the tracking of the desired variable w(t) by the controlled variable y(t) and the second
one consists in the rejection of the negative influence of the disturbances v(t) and vi(t)
on the control system operation. The first function is called the servo problem (set-
point tracking) and the second one is called the regulatory problem.

The behaviour of open-loop and closed-loop control will be shown in two simple
examples.

Example 1.1

It is necessary to analyse open-loop control (the open-loop control system) in Fig.
1.4, where Kp is the open-loop controller gain, k; — the plant gain. It is assumed that the
plant gain k; may change by + Ak;.

Open-loop
controller Plant | v(t)
u(t)

w(t) y(t)
—» Ko — Kk

Fig. 1.4 Simple open-loop control system — Example 1.1

Solution:
For the open-loop control system it holds

y(t) = Kpkyw(t) +v(t). (1.5)
Consider the ideal control objective [see (1.4a)]
y(t) =w(t). (1.6)

and further two cases, when the disturbance v(t) is not zero [v(t) # 0] and it is zero

[v(t) = 0].

ayv(t)=0
From equation (1.5) for the control objective (1.6) we get
1
Kp=—. 1.7
i (1.7)
It holds

y(t) = Kp (ky £ Akyw(t) =

y(t) = (u Ak—kljw(t).

1

(1.8)

We can see that the relative changes of the plant gain +Akj/k; fully come out in
the output variable y(t).

For example, for the plant gain changes £50 %, i.e. Aki/k; = £0.5, on the basis of
(1.8) we get

y(t) = (L+0.5)w(t).

15
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b) v(t) # 0

For the open-loop controller gain Kp (1.7) and the relative change of plant gain
Aki/k; we obtain

y(0) = [u Ak—kljw(t) V(D). (1.9)

1

We can see that in this case the disturbance variable v(t) fully comes out in the
output variable y(t).

For example, for the same plant gain changes like in the previous case, i.e. Aki/k;
==+0.5 we get

y(t) = (L 0.5)w(t) +v(t).

It is clear that the open-loop control (open-loop control system) can be used only
in these cases when we perfectly know the plant behaviour and disturbances do not act
on the plant or their influence is negligible.

Example 1.2

It is necessary to analyse closed-loop control (the closed-loop control system) in
Fig. 1.5, where Kp is the controller gain, k; — the plant gain. It is assumed that the plant
gain k; may change by + Ak.

Controller Plant v(t)
w0 u(®) y(t)
Kp >k —>

Fig. 1.5 Simple closed-loop control system — Example 1.2

Solution:
For the closed-loop control system the relations hold
ya)zKpma0+va?:3
e(t) = w(t) - y(t)
Kok, 1

w(t) +

t) =
ye) 1+ Kk, 1+ Kpk;

v(t). (1.10)

In this case we can consider the plant gain changes + Ak; and the disturbance v(t)
acting, i.e. we can write

4t - Kotk 2250
+ Kp (k, + Ak, )

w(t) +

v(t) =
1+ Kp (k; £ Ak))

16
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y(t) = : ! w(t) + L 0. (1.11)
—Ak+1 1+ ka{liAlJ
ka{li 1} Ky

kl
It is obvious that from (1.11) for
Kp >0 or Kpk —>o (1.12)
we obtain
y(t) > w(t) .

We can see that for sufficiently high controller gain Kp or the product Kpk; the
control objective (1.4a) will hold.

For example, for Kpk; = 100 and the plant gain changes +50 %, i.e. Akp/kp =+0.5
we get

YO =)

100(1+0.5)

PR S N
1+100(1+0.5)

_(0.9901+0:0033 ~0.0033
y(0)=( 0.980L" 5855 Jut) + 0.0099 5 5855 o).

In this case the plant gain kichanges +50 % cause the change of the controlled
variable y(t) less than 2 % and the disturbance variable v(t) is supressed on a value less
than 2 % of the original size.

From the above mentioned it is obvious that the closed-loop control (the closed-
loop control system) is able to ensure high control performance for both functions, i.e.
the tracking problem and regulatory problem as well.

Example 1.3

There is a closed-loop control system in Fig. 1.6, where two disturbance variables
v(t) and vy (t) act on the nonlinear plant which is described by the relation

y(t) = flut) +v(t)]+v,(t). (1.13)
It is necessary to find out the behaviour of this control system for Kp — oo,
v(t v, (t
Controller l ® Plant 10
w(t) _ e(t) u(t) y(t)
. Kp [————X)—{ flu® +v()] —>

Fig. 1.6 Closed-loop control system with nonlinear plant — Example 1.3

Solution:
For the control system in Fig. 1.6 we can write

17
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e(t) = w(t) - y(t)
_u@® =
e(t) = K,

y(t) =w(t) —%- (1.14)

P

On the basis of (1.13) we can determine u(t), i.e.
flu®+v)]=y@) -w) =
u@®)+v() = f [y -wv ] =

u(t) = f [y v, ()] - v(t). (1.15)
After substituting (1.15) in (1.14) we get

It is obvious that for Kp — oo we obtain
y(t) > w(t) .

We can see that for the sufficiently high controller gain Kp on the basis of the
closed-loop control (feedback control) it is possible to fulfil the control objective (1.4a)
for the nonlinear plant and for two mutually independent disturbance variables.

18
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2 MATHEMATICAL MODELS OF DYNAMICAL
SYSTEMS

2.1 General mathematical models

For the design and study of the properties of systems we use their mathematical
models. It is very advantageous because experimentation with real systems may be
substituted by experimentation with their mathematical models, i.e. by simulation. It
enables considerable reductions in cost and risk of damage to the real system. It is also
important for essentially accelerating the whole process. New nontraditional solutions
often arise.

In automatic control theory in the time domain, mathematical models have forms
which are algebraic, transcendental, differential, partial differential, integral, difference,
summation equations and their combinations. The mathematical model can be obtained
by identification using an analytical or experimental method, if necessary by a
combination of them. For example, a mathematical model can be obtained analytically
and its parameters can be refined experimentally. Sometimes term identification means
finding a mathematical model using an experimental method. We will only deal with
such mathematical models that can be expressed in the forms of the t-invariant
(stationary) ordinary differential equations, which describe real systems with lumped
parameters.

When evaluating a mathematical model and the simulation results we must always
remember that every mathematical model is only an approximation of the real system.

Since even a very complex MIMO (multi-input multi-output) system is formed by
combining SISO (single-input single-output) systems, main attention will be paid to
SISO systems.

Consider the SISO system which is described by the generally nonlinear
differential equation

gly™ (t)..... Y, y®),u™ (),...,u(t),u(t)] =0. (2.1a)
y(t) = di;it), Yy =20 dyft), i=23,..
(2.1b)
U(t) dU(t) (J)( ) — d U(t)’ _2'3,_”’m'
with initial conditions

—v. (D) =\ (-1 () — (-
y(0) =Y,,¥(0) =Y¥q,..., ¥ )=y, 7, (2.1c)
u(0) = Uy, u(0) =Uy,...,u™(0) =uf™?,

where u(t) is the input variable (signal) = input, y(t) — the output variable (signal) =
output, g — the generally nonlinear function, n — the system order.

If the inequality
n>m (2.2)
holds, then the mathematical model satisfies a strong physical realizability condition.

19
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In case
n=m (2.3)
it satisfies only a weak physical realizability condition.
For
n<m (2.4)

the mathematical model is not physically realizable and therefore it does not express
the behaviour of the real system.

The mathematical model (2.1a), in which the derivatives appear (2.1b), describes
the dynamic (dynamical) system (it has a memory).

From the differential equation (2.1a) for
lim yO(t)=0; i=12,...,n,
t|imu<i>(t)=o; j=12,....,m

it is possible to obtain the equation (if it exists)

y="f(), (2.5)
where
y=Ilimy(t),
e } (2.6)
u :tll_)rgu(t).

The equation (2.5) expresses the static characteristic of the given dynamic
system (2.1), see e.g. Fig. 2.1.

VA
y=f(u)
by |
a E
-1 0 1 i
’ by
ay

Fig. 2.1 Nonlinear static characteristic — Example 2.1

A static characteristic describes the dependency between output y and input u
variables in a steady-state.

If derivatives do not appear in Equation (2.1a), i.e.,
gly(®),u®)]=0 or g(y,u)=0, (2.7)
then it is the mathematical model of the static system (it has not a memory).

State space mathematical models of a dynamic system are very important. They
are used for describing SISO systems and first of all MIMO systems.

20
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The state space model of the SISO dynamic system has the form

X(t) = g[x(t),u(t)], x(0)=x, - state equation (2.83)
y(t) =h[x(t),u(®)] — output equation (2.8b)
.
X = X:Z =Xy, X oo %, T,
x
0,
g= gf =[91,92: 9u1",
L On

where X(t) is the state vector (state) of the dimension n, g — the generally nonlinear
function of the dimension n, h — the generally nonlinear function, T — the transposition
symbol.

We often omit the independent variable time t in order to simplify a description.

The components X1, Xo,..., X, Of the state x express the inner variables. Knowledge
of them is very important for state space control (see Chapter 7).

The system order n is given by the number of state variables. If in the output
equation the input u(t) does not appear then the given dynamic system (2.8) is strongly
physically realizable. In other cases, it is only weakly physically realizable.

The static characteristic (if it exists) from the state space model can be obtained
fort — o0 = X(t) — 0 and by the elimination of the state variables (see example 2.1).

Example 2.1

The nonlinear dynamic system is described by the differential equation of the
second order

2
a,d dytlz(t) +a,d Z{) +a,Y(t) =Dy sign [u®)Iyluc)|, 2.9)

with initial conditions y(0) =y,a y(0) =Y,.
It is necessary to:
a) determine the physically realizability,
b) determine and plot the static characteristic,
c) express the mathematical model (2.9) in the form of the state space model.

Solution:

a) Therefore n =2 >m = 0 [in the right side of the differential equation there does
not appear the derivative of u(t)], the given dynamic system is strongly physically
realizable.
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b) In the steady-state for t — oo the derivatives in the equation (2.9) are zeros, and
therefore in accordance with (2.6) we can write

89y (t) = by sign (u)ylu =

b, .
y=;jsngn ON

The obtained static characteristic is shown in Fig. 2.1.
c) If we choose the state variables, e.g.

X =Y,
X, =% =Y,
then after substitution in the equation (2.9) and modification we get
X =Xy, X (0) =Y,,
) a a by . )
X === X =~ X +—sign(u)yul, % (0) = Yo.
a, a, a,

The static characteristic can be obtained for the steady-state, i.e. t—>o00 =
X (t) >0, %,(t) > 0 and after elimination of the state variables

0=Xx,

] X, ——x2 S|gn(u)f =
a

y=X

by .
y= a—05|gn(u)\/ﬂ :
2

2.2 Linear dynamic systems

Linear mathematical models create a very important group of mathematical
models of dynamic systems. These mathematical models must satisfy the condition of
the linearity which consists of two partial properties: additivity and homogeneity.
Additivity

u, —>system— vy,
= U, +U, >system—y, +VY,. (2.10a)
u, —system— vy,
Homogeneity:
u —system— y = au — system— ay. (2.10b)
These partial properties may be joined

u, —system—y,
= au, +a,u, > system—a,y, +a,y,, (2.11)
u, —system—y,
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where a, a;, a, are any constants; u(t), us(t) and uy(t) — the input variables (inputs); y(t),
y1(t) and y,(t) — the output variables (outputs).

The linearity of a dynamic system has such a property when the weighting sum
of output variables corresponds to the weighting sum of input variables.

A very important property of linear dynamic systems is: every local property they
have is at the same time their global property.

Example 2.2
The static system is described by the linear algebraic equation
y(®) =ku(t) + o, (2.12)
where k; and y, are constants.
Is it necessary to verify whether the mathematical model (2.12) is linear?

Solution:
We choose, e.g. ui(t) = 2 and uy(t) = 4t.
After substitution in (2.12) we obtain

ut)=2... y,(t) =2k +Y,

£) + Y, (t) = 2k, (1+ 2t) + 2y,
Uz(t)=4t...y2(t):4k1t+y0}:>Y1()"'YZ() L1+ 2t) + 2y,

ut)=u,(t) +u,(t)=201+2t)...y =2k 1+ 2t) + y, = y, (1) + Y, (t) =
=2k, (1+2t) + 2y,.
We can see that for yo # 0 the mathematical model (2.12) from the point of view

of the linearity definition (2.10) or (2.11) is not linear. The mathematical model (2.12)
of a static system will be linear only for y, =0, see Fig. 2.2.

) y,#0 b
u(t t
() v O
—p kl 1
y4 y= klu +Yo y4 y= klu

o =arctank,
y o =arctank,;

/ v g 0 s

Fig. 2.2 Mathematical model of a static system: a) nonlinear, b) linear — Example 2.2

From the above it is clear that the static characteristic of linear systems (if it
exists) must always pass through the origin of coordinates.
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Example 2.3
The dynamic system (integrator) is described by the linear differential equation
dy(t
DO _kuw, v = . 2.13)

or the equivalent integral equation
y(t):kliu(r)dr+ Yo- (2.14)
It is necessary to verify the linearity of the given mathematical model.
Solution:

We choose the same inputs as in Example 2.2 and we obtain

u(t)=2... y(t)=2kt+y,

=y, () + Y, (t) = 2kt (L +t) + 2y,
Uz(t)=4t...y2(t):2k1t2+y0} Y1 (1) + Y, (t) tL+t)+2y,

ut) =u () +u, () =21+ 2t)...y =2k td+t) + y, = y, (1) + y, (1) =
=2k t(d+t) +2y,.

Again we can see that the mathematical model (2.13) or (2.14) for y, # 0 does not
satisfy the condition of the linearity (Fig. 2.3).

a) Yo %0 b)
u(t) (t)
e I, S TTOTh

Fig. 2.3 Mathematical model of integrator: a) nonlinear, b) linear — Example 2.3

This particular conclusion can be generalized. For linear mathematical models
we must always consider zero initial conditions. Otherwise, we cannot work with them
as with mathematical models satisfying the conditions of linearity.
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3 MATHEMATICAL MODELS OF LINEAR DYNAMIC
SYSTEMS

3.1 Basic linear mathematical models

The SISO linear dynamic system in the time domain is very often described by a
linear differential equation with constant coefficients (we will consider only such
systems)

a Y™ () +---+a y(t) +a,y(t) = b, u™ (t)+---+bu(t) + byu(t) (3.1a)
with the initial condition
0)=v.,v(0)=V,,..., y" () = yi"
u(0) = u,,u(0) = Uy,...,u™ () =u{™?

The conditions of physical realizability are given by the relations (2.2) — (2.4).

Applying the Laplace transform (see Appendix A) to the differential equation of
the n-th order (3.1a) with initial conditions (3.1b) we obtain the algebraic equation of
the n-th degree

(@,s"+---+as+a,)Y(s)—L(s) = (b, " +---+bs+by)U(s)—R(s)

and from it we can determine the output variable transform

Y(s)= M_(S)U(S) + M , (3.2)
N(s) N(s)
Transform of response  Transform of response
oninput oninitial conditions
Transform of solutionof differential equation
M(s)=Db,s"+---+bs+b, =b, (s—s))(s—52)...(s—5s0), (3.3)
N(s)=a,5"+ - +a5+a, =a,(5—5)(5—5,)...(S—S,), (3.4)

where Y(s) is the transform of the output variable y(t), U(s) — the transform of the input
variable u(t), L(s) — the polynomial of the max degree n — 1 which is determined by the
initial conditions of the left side of the differential equation, R(s) — the polynomial of
the max degree m — 1 which is determined by the initial conditions of the right side of
the differential equation, M(s) — the polynomial of the degree m which is determined by
the coefficients of the right side of the differential equation, N(s) — the characteristic
polynomial of the degree n which is determined by the coefficients of the left side of
the differential equation, s — the complex variable (dimension time™) [s™].

Since differential equation (3.1) is the mathematical model of the dynamic system
it is obvious that the polynomial N(s) is also at the same time the characteristic
polynomial of this dynamic system.

Using the inverse Laplace transform (see Appendix A) on the transform of the
solution (3.2) we obtain the original of the solution

y(t) =LY ()], (3.5)
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It is very advantageous to use appropriate Laplace transform tables. The tables are
suitable for automatic control theory and are given in Appendix A.

From the relation (3.2) it follows that the relation can be used as the linear
mathematical model of the given linear dynamic system if the transform of the response
at the initial conditions is zero (i.e. the initial conditions are zero), see the conditions of
the linearity (2.10) or (2.11). In this case we can write

M (s)

Y(s) = NS) U (s) =G(s)U(s), (3.6)
G(S)=E= M(S) =
U(s) N(s)

0 0 0 (37)
_bys" e 4bs+by by (s—s)(s—S;)...(S—Sp)

ansn+,..+als+a0 an(S—Sl)(S—Sz)...(S—Sn) )

where G(s) is the transfer function, s; — the poles of the linear dynamic system = the
roots of the characteristic polynomial N(s), s?— the zeros of the linear dynamic system

= the roots of the polynomial M(s). The difference n — m is called the relative degree of
the given system.

The transfer function G(S) is given by the ratio of the transform of the output
variable Y(s) and of the transform of the input variable U(s) for zero initial
conditions. It can be obtained directly from the differential equation (3.1a), because the
transforms of the derivatives of the output y(t) and the input u(t) variables for zero
initial conditions are given by the simple formulas

Liy® ®)}=s'Y(s); i=12...,n, }

3.8
LuD@)}=su(s); j=12,...,m. (9)

The great advantage of the transfer function G(s) is the fact that it allows to
express the properties of the linear dynamic system in the complex variable domain by a
block as in Fig. 3.1.

U(s) Y (s)
—» G(s) |—»

Fig. 3.1 Block diagram of the dynamic system
As it will be shown, it is very simple and effective to work with such blocks.

We can get the static characteristic of the linear dynamic system (if it exists) from
the differential equation (3.1a) for
limy®(t)=0; i=12,...,n,
t—oo - (39)
limu@@t)=0; j=12,...,m,

t—w

y=ku, (3.10a)
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=2 a <0, (3.10h)
Eh)

where k; is the system (plant) gain.

From comparison (3.7), (3.9) and (3.10) a very important relationship between the
time t and the complex variable s follows

t—>w < s—>0. (3.11)

It is clear that on the basis of the relation (3.11) we get the equation of the static
characteristic (3.10) from the transfer function (3.7), and therefore it is possible to write

y =[limG(s)lu, a, #0. (3.12)
A
y y =ku
k, =&, a, #0
bo ————— o

a =arctank,

0 ao u

Fig. 3.2 Static characteristic of linear dynamic system

The static characteristic of the linear dynamic system is a straight line which
always crosses through the origin of the coordinates (Fig. 3.2).

By substituting complex frequency jeo for the complex variable s in the transfer
function (3.7) we obtain the frequency transfer function
_b,(®)"+---+b jo+b,

G(jw) =G(s),, = 19T — Aw)el®, (3.13)
=l a (jo)'+--+a jo+a,

A(®) =mod G(jw) = |G(ja))| : (3.14)

p(w)=argG(jo), (3.15)

where A(w) is the modulus (amplitude, magnitude) of the frequency transfer function,
¢(w) — the argument or phase of the frequency transfer function, w — the angular
frequency (pulsation) (dimension time™) [s™].

In order to distinguish angular frequency (T — the period, f — the frequency)

2r
=== 3.16
T (3.16)
from ,,ordinary* frequency
1
f== 3.17
T (3.17)

with the unit [Hz] and the dimension [s™] for the angular frequency the notation
[rad s is used.
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The mapping of the frequency transfer function G(jw) for @ =0 to w = in the
complex plane is called the frequency response (polar plot) (Fig. 3.3).

A
" @

[dB]
40 — accurate

"""" approximate
20

01 1 10

—20 _

-40 -

()
b) [(/r)agi 4

wl2—

»

T
01 1
—l2-

Fig. 3.4 Logarithmic frequency responses: a) Bode magnitude plot, b) Bode phase plot

Logarithmic frequency responses (Bode frequency responses) are most
commonly used, see Fig. 3.4. In this case the Bode magnitude plot
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L(w) = 20l0g A(w) (3.18)

and the Bode phase plot ¢(w) are represented separately. The frequency axis has a
logarithmic scale and the logarithmic modulus L(w) is given in dB (decibels). For the
Bode plots approximations are used on the basis of straight and asymptotic lines.

The frequency transfer function G(jw) expresses for each value of the angular
frequency o the amplitude (modulus, magnitude) A(w) and the phase (argument) ¢(w)
of the steady-state sinusoidal response y(t) caused by the sinusoidal input u(t) with the
unit amplitude.

That means the frequency response can be obtained experimentally (Fig. 3.5). It
has great significance especially for fast systems.

u(t) =sinat Linear y(t) = A(w)sin[at + p(w)]
> dynamic system —»>
27
A 1) 4 _ _
u(t) y(t) o(w) = Tl=d,
1

AWANE N
RYBMVAYE

\ 4
—
N
N

Fig. 3.5 Interpretation of frequency response

The conditions of the physical realizability are given by the relations (2.2) — (2.4).
It is obvious that every real dynamic system cannot transfer a signal with an infinitely
high angular frequency, therefore for strongly physically realizable dynamic systems
there must hold

lim G(jo) =0

AD—>0

lim A@)=0 * < n>m. (3.19)

@—>0

lim L(e) = —oo0

W—>0

From the frequency transfer function (3.13) we can very easily get the equation of
the static characteristic (if it exists) because for the steady-state «w = 0 therefore it must
hold

y:[lirT?)G(ja))]u, a,#0. (3.20)
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It follows from (3.11) for s = jw
t—>wo < 0w—>0. (3.21)

It is clear that between the time t and the angular frequency « the dual
relationship holds (Fig. 3.6)

t>0 < v wx. (3.22)

yt 4 C

6/ e 0 o
'\—)Oca)—)w

Fig. 3.6 Relationship between the time t and the angular frequency w

From the relations (3.21), (3.22) and Fig. 3.6 it follows that the properties of the
linear dynamic system for low angular frequencies decide about its properties in long
periods, i.e. in the steady-states and vice versa. Similarly its properties for high angular
frequencies decide about its properties for the initial time response, i.e. about the rise
time of the time response (about the transient state) and vice versa.

Properties of linear dynamic systems with zero initial conditions can be expressed
by time responses caused by the well-defined courses of an input variable.

In automatic control theory, there are two basic courses of input variable u(t), they
are the unit Dirac impulse 4(t) and unit Heaviside step 7(t), see Appendix A.

The impulse response g(t) describes the response of the linear dynamic system on
the input variable in the form of the Dirac impulse 4(t) for zero initial condition, see Fig.
3.7.

In accordance with the relation (3.6) we can write
Y (s) =G(s)U(s) (3.23)
and for
u)=o()=U(s)=1

we get

y(t)=g(t) =L {G(s)}. (3.24)
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u(t) =5(t) Linear yt)=g(t)
> dynamic system

v

Impulse response

uc) 4 o y(t)
Dirac impulse
14 u(t) = 5(t) y =91 =L"{GE)}
0 T

t 0] \
[a(t)dt=h(x)

Fig. 3.7 Impulse response of the linear dynamic system
In the linear dynamic system a derivative or an integrating of the input variable
u(t) corresponds to a derivative or an integrating of the output variable y(t).

We will use these properties for the determination of the static characteristic of
the linear dynamic system on the basis of its impulse response g(t). Since the static
characteristic of the linear dynamic system is a straight line crossing through the origin
of the coordinates it is enough to determine its one non-zero point. We can write

U =u(o0) = |imj5(r)dr =1,
t—>000

t
y=y(®)=lim[g(r)dz.
0
From this we can easily get the equation of the static characteristic (if it exists)
t
y:[tlimjg(r)dr]u. (3.25)
*}OOO

The strong condition of the physical realizability has the form
9(0)| < 0. (3.26)
If g(0) contains the Dirac impulse 4(t), then the given linear dynamic system is
only weakly physically realizable.

The step response h(t) describes the response of the linear dynamic system on the
input variable in the form of the Heaviside step #(t) for zero initial condition, see Fig.
3.8.

On the basis of the relation (3.23) for
1

u(t) =n(t) =U(s) =3
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u@®=n() Linear y(t) =h(t)
| dynamic system

v

Heaviside step Step response
4] G(s)
u® YO4  ym)=h)= Ll{ }
u(t) = ()
1 h()
0 t 70 X

Fig. 3.8 Step response of the linear dynamic system

we get
y(t) =h(t) = LI{G(S)} (3.27)

From the step response h(t) the equation of the static characteristic may be very
easily obtained (if it exists) because the relations hold

u=u(er) = () =1,

y = Y() =h(),
i.e.
y= [tlm h(t)]u . (3.28)
The strong condition of the physical realizability has the form
h(0)=0 (3.29)
and the weak condition
0<|h(0)| < o0. (3.30)

It is useful to apply the generalized derivative which is defined by the relations
(Fig. 3.9)

X(1) = Xor () + 2N -1,),
h, = lim x(©) - lim x(t),

(3.31)

where t; are the points of discontinuity with the jumps h;, X, (t) — the ordinary
derivative determined between the points of discontinuity.
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X(®) A

==
\Y
o
=2
A
o

Fig. 3.9 Function x(t) with points of discontinuity

By means of the generalized derivative it is possible to express the relationship
between the Dirac impulse and the Heaviside step

5(t)=% o n(t)zié(r)dr (3.32)
and between the impulse and step responses

00="10 o h(t)=ig(r)dr, (3:33)

G(5)=sH(E) = H(EH =", (3:34)

From all mathematical models of the linear dynamic systems the state space
model is the most general

X(t) = Ax(t) +bu(t), x(0)=x, - stateequation (3.35a)

y(t) = ¢’ x(t) + du(t) — output equation (3.35b)

where A is the square system (dynamics) matrix of the order n [(nxn)], b — the vector of
the input of the dimension n, ¢ — the vector of the output of the dimension n, d — the
transfer constant, T — the transposition symbol.

The block diagram of the state space model of the linear dynamic system (3.35) is
in Fig. 3.10.

For d = 0 the state space model (3.35) satisfies the strong condition of the physical
realizability and for d # 0 satisfies only the weak condition of physical realizability.
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Xo
u(t) X(®) lx(t) y(t)
» b [(9)d7 |mp ¢’ —><§§>—>
A
> d

Fig. 3.10 Block diagram of the state space model of the linear dynamic system

If the state space model (3.35) satisfies the controllability condition
Q.(Ab)=[b, Ab,...,A"'b], detQ,[Ab]=0 (3.36)
and the observability condition
Q,,(Ac)=[c,A'c,...,(A")"*c]", detQ,[Ac']1#0, (3.37)

then for zero initial conditions [x(0) = X, = 0] we can get the transfer function on the
basis of the Laplace transform

sX(s) = AX(s)+bU(s)
Y(s)=c" X(s)+dU(s) }

_Y(S) _ ot Ayt
G(s)—U(S)—c (sl —A)"b+d, (3.38)

where det is the determinant, | — the unit matrix, Q¢ — the controllability matrix of
order n [(nxn)], Qon — the observability matrix of order n [(nxn)].

From the transfer function (3.38) on the basis of (3.12) we can obtain the equation
of the static characteristic (if it exists)

y=|irr?)[cT (sl —A)'b+d]u. (3.39)
It is preferable for getting the transfer function to use the relation

Y(s) _ det(sl — A+bc)—det(sl - A)
Us) det(sl — A)

which does not demand the inversion of the functional matrix.

+d, (3.40)

G(s) =

The controllability condition (3.36) expresses a very important property of the
given linear dynamic system consisting in fact that there is such an input variable
(control) u(t) which can transfer the system from any initial state to any other state in a
finite time.

The observability condition (3.37) expresses the fact that on the basis of the
courses of the input variable (control) u(t) and the output variable y(t) at the given time
interval it is possible to determine state x(t) in any time from this interval.
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Transfer function (3.38) or (3.39) are determined on the basis of the state space
model (3.35) uniquely. In contrast to the transfer function

Y(s) bys"+...+bjs+b;
U(s) as"+...+as+a

G(s) = (3.41a)

the state space model can have many (theoretically infinitely many) different forms. For
example, for n = m the transfer function (3.41a) can be written down in the form
Y(s) b, b, 8" +...+ s +b,

G S)= = =
®) U(s) a, s"+a,,s""+...+as+a,

b, " +...+bs+Db,
N(s)

From such a modified transfer function as (3.41b) we can directly express the
state space model (3.35) in the canonical controller form, where

—d+ (3.41b)

0 1 o ... O 0
0 0 1 ... O 0
A= ... . . . b=
0 0 0o .. 1 0 (3.42)
—a, —a —a, ... —a,| 1]
ce =[by,by,...,0, 4], d =Z—':‘.

The modified transfer function (3.41b) was obtained from the transfer function
(3.41a) by dividing the nominator by the denominator and the residue by the
coefficienta,, .

The coefficients a; and b; can be obtained directly on the basis of the formulas

i=01,...,n. (3.43)

For the state space model in the canonical controller form (3.42) the dual
canonical observer form exists

X (1) = AcX, (1) +bou(t), X, (1) = A%, (t) + bu(t), (3.44)
y(t) = ¢l x, (t) +du(t), y(t) =cl x, (t) +du(t), '
canonical controller form canonical observer form

where
A=A s A=A,
b, =cC, = b, =c,, (3.45)
cy =h] & ¢l =D,
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Transfer constant d remains the same in all forms of the state space models.

Both matrices A, and A =A! in both state space models (3.44) have the

Frobenius canonical form characterized in that the first or the last row, or the first or
the last column contains the negative coefficients of the characteristic polynomial N(s)
for a, = 1. Their characteristic polynomials are the same

N(s) =det(sl — A) =det(sl — A,) =det(sl - A) =

3 (3.46)
=s"+a,,5" +...+as+a, =(s—5)(5—5,) - (5-5,),

where s; are the eigenvalues which are the same for matrices A, A, and A, = A] .

From a comparison of the denominators in the transfer functions (3.40) and (3.41)
and the polynomial (3.46) it follows that the roots of the characteristic polynomials are
the eigenvalues of the matrices A, A and A,, and therefore they are also the poles of the
linear dynamic system.

We can obtain the canonical state space models (3.44) from the general state
space model (3.35) on the basis of the transformation matrices T, and T,

T, =Q,(ADb)Q, (3.47)
T, =QQ,,(Ac"), (3.48)
where the matrix
[a, a, .. a, 1]
a a ... 1 0
Q=| ... ... ... ... .. (3.49)
a,, 1 ... 0 O
1 0 .. 0 O]

is made up from the coefficients of the characteristic polynomial N(s) for a, = 1, except
the coefficient ag, see also relation (3.41b). Then we can write

canonical controller form

X, =T.'X,
-1 -1 T AT T (350)
A =T, AT, b, =T, b=[0,0,...1], c, =c T, =[by,b,...,b, 4],
canonical observer form
X =T x,
° e (3.51)

A =T,'AT,, b, =T,"0=[by,b,....b, ,]", c; =c'T, =[0,0,...1].

Vectors b, and c. are created by the coefficients b; of the nominator in the relation
(3.41) and they can be determined directly on the basis of the formulas (3.43).

From the above mentioned mathematical models the state space model is the most
general. Assuming controllability and observability [see relations (3.36) and (3.37)]
and, of course, zero initial conditions, all these mathematical models of the linear
dynamical systems, i.e., linear differential equations, transfer functions, frequency
transfer functions, impulse responses, step responses and linear state space models are
equivalent and mutually transferable.
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For this reason, for the analysis and synthesis of control systems there should
always be used such a mathematical model that is the most suitable for a given purpose.

3.2 Classification of linear dynamic systems

Linear dynamic systems can be classified according to various criteria. In this text
the classification of linear dynamic systems is done on the basis of their properties for
t — oo, or for v — 0 [see (3.21)].

Linear dynamic systems can be classified on proportional, derivative and
integrating systems (Fig. 3.11).

Linear
dynamic systems

Proportional Derivative Integrating

Fig. 3.11 Basic classification of linear dynamic systems

For proportional, derivative and integral linear dynamic systems the static
characteristics (Fig. 3.12a), the step responses for t — o« (Fig. 3.12b), the frequency
responses for w — 0 (Fig. 3.12c) and the Bode magnitude plots for « — 0 (Fig. 3.12d)
are shown in Figure 3.12.

Proportional systems

The general transfer function of a proportional system of the n-th order with time
delay (T4 > 0) has the form

Y(s) b,s"+---+bs+b,
U(s) as"+:--+as+a,

G(s) = e, a,>0, by #0, T, >0, (3.52)

where Ty is time delay (dead time), n — the system order.

The polynomial ans" + ... + a;s + ap has all roots in the left half plane of the
complex plane s [this assumption holds also in relations (3.57) and (3.58)]. The general
properties of proportional systems in the time and the frequency domains are shown in
Fig. 3.12 (on the left).

The transfer function of the time delay is represented by the transcendental
function

e s, (3.53)
It is often approximated by the algebraic functions, e.g.
gs 1 1
e Py —— 3.54
el Tys+1 (3:54)
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Proportional Derivative
a)
Y 4 Nontrivial Y 4 Trivial
a+#0 \ a=0
0 ! o/ !
b)
+y(®) =h(t) +y(®) =h(t)
-
h(e0) # 0 h(ec) =0
A\ 4 > + >
0 t 0 4 t
C)
Im A G(Ja)) |m A G(Ja))
0<G(0) <o G(0)=0
r=1
X ©=0 . w=0
0 A/ Re 0 Re'
d)
L(w) 4 L(w) 4
[dB] [@e1 |~
——— / r=1
20 20 4
0 R 0 R
| 1 | | - | 1 | | v
01 10 100 @ 01 10 100 @
— 201 — 20+

Integrating

y 4

b Does not exist

0 u
ty®) =h(t)
4(00)| =0
0 e
A
Im G(jw)
|G (0)| =00
q=1
0 Re
w—>0
L(a)) A
[dB]
| 9t
20 -\
O | -
™1 T T >
01 10 100 @
— 204

Fig. 3.12 Linear dynamic systems: a) static characteristics, b) step responses, c)

frequency responses, d) Bode magnitude plots
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e = ~— 2 (3.55)

For approximation

e =1+ X (3.56)
Taylor’s expansion was used.

The approximation of the time delay (3.55) is also called the Padé expansion of
the first order.

The time delay (3.53) in the time domain makes for shifting on the right of the
time response without any changes to its shape (Fig. 3.13a).

In the frequency domain the time delay (3.53) does not affect a modulus. It
increases a negative phase therefore the frequency response creates the endless spiral
around the origin (Fig. 3.13b).

a)
(D) A
kl
0 t >
b)

G(jo)

Fig. 3.13 Influence of time delay on: a) time response, b) frequency response
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Derivative systems

The general transfer function of a derivative system of the r-th order with time
delay (T4 > 0) has the form
Y (s) _ s"(b,s"+---+bs+by) o Tes
U@s) a,s"+-+as+a, ’ (3.57)
a,>0, by#0, r>1 T, >0.

G(s) =

The general properties of derivative systems in the time and frequency domains
are shown in Fig. 3.12 (in the middle).

Integrating systems
The general transfer function of an integrating system of the g-th order with time
delay (T4 > 0) has the form
m
G(s) = Y (s) _ b,s" +---+bs+Db, e
us) s%a,s"+---+as+ay) (3.58)
a,>0, by#0, q=1 T, >0.

The total order of the integrating system (3.58) is n + q.

The general properties of integrating systems in the time and frequency domains
are shown in Fig. 3.12 (on the right).

Example 3.1

A mathematical model of the linear dynamic system has the form of the linear
differential equation with constant coefficients

7,9 é’?) Fy() =ku(t-T,), (3.59)

where T, is the time constant [s], Tq — the time delay [s], k; — the system gain [-].

It is necessary to express the given mathematical model in the forms of the
transfer function, the frequency transfer function, the impulse response, the step
response and the state space model. On the basis of all models it is necessary to
determine the physical realizability and the static characteristic.

Solution:
Differential equation

The mathematical model is already in the form of the linear differential equations.

It shows that n=1>m =0, i.e. the relative degree is equal to one, and therefore
the dynamic system is strongly physically realizable.

From the differential equation (3.59) for t — o we can get the equation of the
static characteristic [see (3.2)]

y=ku. (3.60)
Transfer function

By means of the Laplace transform for zero initial condition from the differential
equation (3.59) we get [see (3.8)]
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TSY(s)+Y(s)=kU(s)e ™ =
— @ — kl —Tys
SO =T~ et (3.61)

Because n=1>m =0, the given linear dynamic system is strongly physically
realizable.

The static characteristic can be obtained on the basis of (3.12)
y= [IirrgG(s)]u = y=ku.
S—>
Frequency transfer function

The frequency transfer function can be easily obtained [see (3.13)]
Ky

G(jw)=G(s),, = it e = A(w)e, (3.62a)
A(w) =modG(jw), ¢(w)=argG(jw). (3.62b)
We divide the frequency transfer function (3.62) into two parts

G(jo) = G,(j0)G, (jw) = A (@) Ay () !0, (3.63)
Giw)= l+?l'la)

A (w) = mod G, (jw) = mod 1+k_1 = K =, (3.64a)

Mo 1+ w)

¢, (w) =argG,(jo) = arg 1+l;{|_ » =-arctgT,m, (3.64b)
G,(jo)=e =

A, (@) =mod G, (jw) = mod e e =1, (3.65a)
@, (w)=argG,(jw) =arg e 1’ =T, . (3.65b)

Relations (3.64) and (3.65) were obtained on the basis of known formulas for
complex numbers

1 1 1

mod — = — = : (3.664)
a+jb mod(a+jb) /a2 +p?
1 . b
arg — =—arg(a+ jb) =—arctan — (3.66b)
a+jb a
and the Euler formula
e *=cosx— jsinx. (3.67)

Then for frequency transfer function (3.62) the relations hold
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Aw) = A @) Ay() = —— (3.682)
1+ (Tiw)
o(®) =g (@) +@,(0) =—arctanT,w-Tyo. (3.68b)

From the relations (3.64), (3.65) and (3.68) it follows that the time delay has no
effect on the modulus (the modulus of the time delay is equal to one), but significantly
increases the negative phase.

Just an endless growth of a negative phase causes the creation of the endless spiral
at the frequency response, see Fig. 3.13b.

Impulse response

The impulse response g(t) is the original of the transfer function G(s). Since the
transfer function (3.61) contains the time delay, it is suitable to write it down in the
form (similarly to the frequency transfer function)

G(s) = G,(5)G, (),
(3.69)

k
G (s)=—2L—, G,(s)=e "
1(S) Ts+1 ,(s)

and to find the impulse response gi(t), i.e. the original of the transfer function G;(s)
which do not contain the time delay (see Appendix A)

BO=L16) Ll{T :il} —pe ™. (3.70)

Dy 4 )

k| =g dt=h(x)

Tl

g(t) =¥ =LHG(s)}
0 T T, +T, t;
D)y 4
h(eo)=k, [T~ =

h(t) =}g(f)dr - Ll{?}

0 T, T, +T, t

Fig. 3.14 Time responses: a) impulse, b) step — Example 3.1
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The resulting impulse response will be delayed by Tg4, and therefore we can write
(Fig. 3.14a)

i}

10 =$e Tot-T,). (3.71)

1

We must use the delayed Heaviside step #(t — Tq), because it ensures
gt)=0 for t<T,. (3.72)

Attimet = Ty, i.e. at the beginning of the input u(t) acting at impulse response g(t)
does not contain the Dirac impulse J(t — Ty), and therefore the linear dynamic system is
strongly physically realizable (Fig. 3.14a).

The static characteristic can be determined on the basis of the relation (3.25). In
accordance with (3.25) we can write

t © 7i
lim[g(r)dr="2Te & pt-T,)dt=
t—>ooo T]_O

Ty w _ T T *®

=1fe "dt=fe "dr=|-ke "| =k

e g tae ke
= y=ku.

Step response

Similarly for the impulse response we use the relations (3.69) and in accordance
with the formula (3.27) for part of the transfer function without time delay and we get

GG Ky —l1_ _T%
hl(t)—L{ : }_L {s(l’lerl)} kl[l e J (3.73)

The resulting step response h(t) will be delayed by Tq4, and therefore we can write
(Figs 3.13a and 3.14b)

t-Ty

h(t) = kl[l—e E }y(t—Td). (3.74)
The delayed Heaviside step #(t — Ty) ensures

ht)=0 for t<T,. (3.75)

At time t =Ty, i.e. at the beginning of the input u(t) acting the step response h(t)
equals zero and therefore the linear dynamic system is strongly physically realizable.

For determining the static characteristic the relation (3.28) is used

=Ty
tIim h(t)tlim[kl[l—e T ]ry(t—Td)]k1 =
y =ku.
We easily make sure that the relation (Fig. 3.14) holds
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_dh(®)
90 ==

< h(t) =jg(f)dr.
0

State space model

Since the linear differential equation (3.59) is very simple, e.g for x(t) = y(t) we
can directly write

X(t) :—l x(t)+ﬁu(t—Td) — stateequation
T, T (3.76)

y(t) = x(t) — outputequation
where x(t) is the state.

It is obvious that the form (3.76) is only one of many possible equivalent forms of
a state space model.

For the state space model (3.76) d =0, and therefore the linear dynamic system is
strongly physically realizable.

The static characteristic can be obtained on the basis of the state space model
(3.76)

t>w = X(t)>0 =

O:—lx+ﬁu
T, T = y=ku.

y=X

It is evident from all the above mentioned mathematical models that it is the
proportional system of the first order with a time delay (see Fig. 12.3).

For this system the following abbreviations are often used: FOPTD system (first
order plus time delay system), FOPDT system (first order plus dead time system) and
FOLPD system (first order lag plus time delay system).

The FOPTD system is very important for automatic control theory because it is
very often used for the approximation of nonoscillatory plants of high order.

Example 3.2

It is necessary to express a resistance, an inductance and a capacitance in the form
of impedance transforms and transfer functions (Fig. 3.15). In Fig. 3.15 there are: u(t) —
the voltage [V], i(t) — the current [A], R — the resistance [Q2], L — the inductance [H], C -
the capacitance [F].

a) b) 0)
I(t) i(t) ity C
— R L
u(t) u(t) u(t)

Fig. 3.15 — Passive electrical elements: a) resistor, b) inductor, ¢) capacitor
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Solution:
In order to determine the impedance transform Z(s) we use the generalized Ohm's
Law
1(s) _Y6) =
Z(s)
Z(s)= & (3.77)
1(s)

where U(s) is the voltage transform, I(s) — the current transform.

The transfer function of the passive electrical element with the impedance
transform Z(s) depends on if the input is the current I(s) or the voltage U(s), see Fig.
3.16.

a) b)
U
9] Z(s) | Y6 ﬂ e
Z(s)

Fig. 3.16 Transfer function of the passive electrical element: a) input = current,
b) input = voltage
a) Resistor

For a resistor with the resistance R it holds
u(t) =Ri(t).

Using the Laplace transform we get
U(s)=RI(s) =
2(s)=20) _g. (3.78)

1(s)

The resistor with the resistance R has the property of the ideal proportional system
for current or voltage inputs (Fig. 3.17a).

b) Inductor
For an inductor with the inductance L it holds

di(t)

U(t) = LW

o i(t):%}u(r)dr.
0

Applying the Laplace transform with the zero initial condition we get
U(s)=Lsl(s) =
U(s)
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The inductor with the inductance L has the property of the ideal derivative system
for the current input and the property of the ideal integrating system for the voltage
input (Fig. 3.17D).

c¢) Capacitor
For a capacitor with capacitance C it holds

u(t):é}i(r)dr o i(t)=0$.
0

Applying the Laplace transform with the zero initial condition we get

U(s):él(s) N

_UG_1
Z(s) = TS (3.80)

The capacitor with capacitance C has the property of the ideal system for the
current input and the property of the ideal derivative system for the voltage input (Fig.
3.17¢).

a) Resistor
| (S) U (S) U(s) 1 I (S)
—» R |—>» — -
b) Inductor
1(s) U(s) U(s) 1(s)
—» Ls +—r — 1 —
Ls

c) Capacitor

1(s) 1 U(s) U (s) 1(s)
_’ —_—

—» Cs |—
Cs

Fig. 3.17 Transfer functions of passive electrical elements: a) resistor, b) inductor,
C) capacitor

3.3 Block diagram algebra

Block diagrams have been used in the previous chapters. Now we show that the

block diagrams representing complex systems can be easily simplified by using block
diagram algebra.
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The system (subsystem, element, etc.) is expressed in block diagrams by the block
containing its transfer function. Addition and subtraction (comparison) of the variables
(signals) are expressed by the summing node and variables (signals) branching is
expressed by the information node (Fig. 3.18).

a) b) Ui(s) c) Y(s)
U(s) Y(s) U,(s) Y(s) Y(s) Y(s)
—> G(s) — —>®—> >
Uy(s) Y6
Y(5) = G(s)U (s) Y(5) = U, () +U, (5)~Us s)

Fig. 3.18 Representation: a) linear dynamic system by block, b) addition and subtraction
by the summing node, ¢) branching by the information node

The filled segment of the summation node or minus sign means subtraction of the
corresponding variable (signal). From the summation node only one variable can come
out. For the reason of simplicity and clarity the independent variable s is not often
explicitly written in transfer functions and transforms in the block diagrams.

a)

] X Y U Y
— G » G, +— = —>» GG, |+—»
b)
u X Y U y
Gl(s) > — —> Gl_Gz >
X2
G,(s)
c)
U X1 Y U G, Y
— GO = " 1766, |
:I:X2
G,(s)

Fig. 3.19 Interconnection of blocks: a) serial, b) parallel, ¢) feedback
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For the serial (cascade) interconnection in Fig. 3.19a it holds
Y (s) =G,(s) X (s) Y(s
’ 366%>il=ﬁﬁﬁx$=@@ﬁmﬂ- (3.81)
X(s) =Gy(s)U (s) U(s)
For the serial interconnection of the blocks the resultant transfer function is the
product of the particular transfer functions (it does not depend on the order).
For the parallel interconnection in Fig. 3.19b it holds
Y (8) = Xy(s) — X5 (s) Y(s)
X,(s) =Gy (s)U (s) =G(s) = ——=Gy(s) - G,(s).

(3.82)
_ (s)
X5(8) =G, (s)U ()
Tab. 3.1 Basic block diagram transformations
Moving an information node ahead of a block
U Y
U Y G —»
Yyl G _E:
\ _[: G |
_>
Moving an information node behind a block
Y
Y.l G —l Yl >
1 U
§] »
>
Moving a summing node behind a block
U, Y
U, Y — G >
—» G R
u, | 1
U, — G

Moving a summing node ahead of a block

Y U

Y
U, | &

c |E

Moving a block from a parallel interconnection

Qs U 1 y

—» G, #G—z
GJ

2

I__$C

\ 4
@

Moving a block from a feedback interconnection

v <

U Y

—M%)—» G
' I U—> éz > G, |» G,
G,

48



VITECEK, A., VITECKOVA, M. Closed-Loop Control of Mechatronic Systems

For the parallel interconnection of the blocks the resultant transfer function is the
sum of the particular transfer functions taking into account the signs at the summing
node.

For the feedback interconnection in Fig. 3.19c¢ it holds
Y (s) =G, (s) X,(s)
Xy(s) =U(s) = X,(s)p = G(s) =
X,(8) = G,(s)Y (s)

Y(s)  Gy(s)
U(s) 1FGy(s)Gy(s)

(3.83)

For the feedback interconnection the resultant transfer function is given by the
transfer function in the forward path (branch) divided by the negative (in case of
positive feedback), or the positive (in the case of negative feedback) product of the
transfer functions in the forward and feedback paths (branches) increased by one. The
transfer function of the path without the block (transfer function) is considered as a unit.

With knowledge of the three basic interconnections and simple modification of
the block diagrams, which are shown in Tab. 3.1, we can easily simplify any even very
complex block diagram.

If the block diagram contains multiple input and output variables, then for each
output variable all the input variables are considered, the variables which are not
considered are assumed equal to zero (they are not drawn). The resulting transfer
functions for each input variable are given by the sum of the effects of the all input
variables (it is based on the linearity). For reasons of clarity, the resulting transfer
function often uses a subscript, the first letter indicates the input variable and the second
letter indicates the output variable (sometimes the opposite order is used).

Example 3.3

The simple electrical circuit with the passive electrical elements with the
impedance transforms Z;(s) and Z,(s) is shown in Fig. 3.20. It is necessary to determine
its transfer function assuming that the voltage u;(t) [V] is the input and the voltage u,(t)
[V] is the output.

Solution:

We determine the transfer function of the electrical circuit in Fig. 3.20a in three
ways.

a) Classical approach
Since for both impedances the current i(t) is the same, therefore we can write
Z,(s)1(s) =U.(s)-U,(s
1(8)1(8) =Us () 2()}321(8)“: 1
Z,(s)1(s) =U,(s) Z,(9) G(s)

G(s) =2 - Z() (3.84)
Ui(s)  Zi(S)+Z,(s)

b) Voltage divider

The circuit in Fig. 3.20a can be regarded as a voltage divider in Fig. 3.20b. For a
voltage divider it holds
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Uy(s)  Z,(s)
Ui(s)  Z(s)+Z,(s)

a) b)
I(s)
Z:(5) |1 Us(s)
Ul(s)l Z(s) l Ua(s) )
2(S

U,(s)-U,(s) 1(s)
U, (s) 1 7 Ui(s)
— | Z,(s) 2(8) g

Fig. 3.20 Simple electrical circuit with passive elements: a) scheme, b) voltage divider,
c) feedback circuit — Example 3.3
c¢) Feedback circuit

The electrical circuit in Fig. 3.20a can also be considered as the feedback circuit
in Fig. 3.20c. In accordance with the relations (3.81) and (3.83) we can directly write

Z,(9)
_U() _ Zi(s) _ Z,(9)
()= Uy(s) 14 %09 Zi(8)+Z,(5)
Z,(s)

Example 3.4

An operational amplifier (op-amp) is a very important active element that has
wide application in mechatronics. In electronics and electrical engineering it is available
as an integrated circuit. It is an amplifier with a high gain (theoretically infinitely high)
and a large input resistance (theoretically infinitely large), which works with negative
feedback (Fig. 3.21). By the appropriate choice of the feedback impedance Z,(s) and the
impedance Z;(s) in the input the operational amplifier can realize various dynamic
properties. The power supply for operational amplifiers is not drawn and its simplified
scheme is used (Fig. 3.21Db).

It is necessary to derive the transfer function of the operational amplifier.
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a) b)
|2(S)l ZZ(S) ZZ(S)
i_—':l— - ul(sg_é(S"L Ux(9)
U1(S)l Z4(s) l U, ()
O l O

Fig. 3.21 Operational amplifier: a) scheme, b) simplified scheme — Example 3.4

Solution:

Since the amplification and the input resistance of the operational amplifier are
very high, it is obvious that any current cannot flow in it, i.e. it must hold

_ Ul_(s) Uz(s):
1,(s)+1,(s)=0 = 2.(9) +—Zz(s) 0=

U9 2,09
0= 09 " 2 (3:89)

Example 3.5

For all circuits with the operational amplifier in Fig. 3.22 it is necessary to
determine their transfer functions.

Solution:

For a determination of the transfer functions of the electrical circuits with an
operational amplifier in Fig. 3.22 we will use the derived formula (3.85) in Example
34 ie.

G(S) — UZ(S) — _Zz(s)
U(s)  Zy(s)

Assuming that the resistance is in [Q2] and the capacitance is in [F], the product of
the resistance and capacitance is in [s].

a)
U,(s) R,
G(s)=—2~2=-—-2, (3.86)
U, (s) R,
It is the ideal proportional system (ideal amplifier) — P.
b)
U,(s) R
G(s)=—2~=——=-RCs. 3.87
©) U 1 (587

Cs
It is the ideal derivative system — D.
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) R, b) R
R, C
o—|
C
0 K I
C R,
[ —
R [l Rl
C
? ’ ]
RZ C2 Rz
— 1
R, C1
o] F_Diw
C
0 k I
RZ C2 Rz

of) Ci |

: E — ﬂ ] D«,
R, R1

Fig. 3.22 Electrical circuits with an operational amplifier — Example 3.5

1

_Uz(s)__gz_i
G(s)——Ul(S)— 5o (3.89)

It is the ideal integrating system — I.
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d)
Ry
C,s
U R +c:1 R, 1
G(s) =228 __ S __ N 2 (3.89)
U,(s) R, R, R,C,5+1
It is the proportional system of the first order
e)
U R +cl R,C,s+1
G(s) = 2(5) =— 25 _ _RaboSH . (3.90)
U,(s) R, R.C,s

This electrical circuit with the operational amplifier realizes the P1 controller (for
more details see Section 5.1).

f)
Ry
C,s
U i +cl R,C
Gs)=D2® " CS _ RGs (391)
U,(s) 1 R,C,s+1
C;s
It is the derivative system of the first order (the real derivative system).
9)
1
U, (s) Rt s (RC;s+1)(R,C,5+1)
G(s)=—2~=— = -1 272 : (3.92)
U, (s) R R,C,s
C;s
Rﬁi
C;s

This electrical circuit with the operational amplifier realizes the PID controller
with interaction (for more details see Section 5.1).

h)

R, +
Gs)=Y2() -~ Cs _ R, RGs+l (3.93)
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This electrical circuit with the operational amplifier realizes the lead-lag
compensator. It improves an undesirable frequency response.

Example 3.6

It is necessary to derive a mathematical model of a DC motor with a constant
separate excitation (furthermore, we will use “DC motor”) in Fig. 3.23, where means:
Jm — the total moment of inertia reduced in the motor shaft [kg m?], ia(t) — the armature
current [A], ua(t) — the armature voltage [V], Ra - the total resistance of the armature
circuit [Q2], L, — the total inductance of the armature circuit [H], by, — the coefficient of
viscous friction [N msrad™], m(t) - the motor torque [N m], my(t) — the load torque
[N m], a(t) — the angle of the motor shaft [rad], w(t) — the angular velocity of the motor
shaft [rad s™], ¢y — the motor constant [N m A'l], Ce — the motor constant [V s rad™],
Ue(t) — the induced voltage [V], @ — the constant magnetic flux of the excitation [Wb ].

ia (t) Cms Ce

o
@ =const

Fig. 3.23 Simplified scheme of the DC motor — Example 3.6

Solution:
In accordance with Fig. 3.23 we can write [3, 16, 21]:

da(t)
EPTE o(t),

3,22 b0 = m©) -m @)
m(t) = Gy (1) (3.94)
+ Raia(t) = ua (t) - ue(t)!

Ue t)= Cea)(t)-

Aw

Applying the Laplace transform with zero initial conditions and after modification
we get
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AGs) =§Q(s),

1
Q(s) = Jstb [M(s)—M,(s)],
M (s) =cCpla(s),

1
Ia(s) = LaS N Ra [Ua(s) —Ue(S)],

U, (s) =c.Q(s).

Now we can easily make up a block diagram corresponding to the above

equations (Fig. 3.24).

On the basis of the block diagram in Fig. 3.24 we can easily obtain the transfer

functions:
1 (s) lM| (s)
: M (s) €2(s)
Ua(s) 2 1 1 1 A(S) R
LaS+ Ra " Cm g Jms+bm S g
U.(s)
C. |«
Fig. 3.24 Bock diagram of DC motor — Example 3.6

Angular velocity of the motor shaft
Q) _ Cn (3.95)
U,(s) (JI,8+Db,)(L;s+R,)+cCcC,
Qs) _ L,s+R, . (3.96)
M, (s) (Jps+b,)(L,s+R,)+c.cC,

Angle of the motor shaft
A) _ Cm (3.97)
Ua(8)  S[(Ips+by)(Las+Ry) +C.Cp
ABs) _ L,s+R, . (3.98)
MI(S) S[(‘]ms+bm)(LaS+ Ra)+cecm]

For powers in steady-state equality holds
U, =Moo = c.ol, =C i, = C,=C,,. (3.99)

The state space model of the DC motor can be easily obtained from the equations

(3.94)
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da(t)
7 — (1),
it o(t)
do(t) b, Coy 1
—L = (b)) + 1 (1) ——my (t),
it Jmco() 3. a(t) 3 i (t)
di, (t) C R, . 1
—s = ot) -1, (t) + —u,(t).
it Laco() L a() L a()
The equations (3.100) can be written down in the matrix form
de®] 10 1 0
ddt X a(t) 0 0
9o® | 1o _Bn S )y 4] 0 fu, - m
dt ‘]m ‘]m | (t) ‘]m
di, (t) 0 G R, [ L_a 0
L dt ] L, L,
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4 MATHEMATICAL MODEL SIMPLIFICATION

4.1 Linearization

Linear dynamical systems are in principle the idealization of real dynamic
systems. The real world is nonlinear, and therefore, if we want to use linear models, we
have to agree to various simplifying assumptions. One of the most important
assumptions is that the system operates in the "close” neighbourhood of the operating
point. In this neighbourhood the mathematical model of the dynamic system can be
considered as linear.

Assume that a nonlinear dynamical system is described by the differential
equation (2.1a)

gly™ @)..... y@), y@),u™(t).....u(t),u(t)] =0.

Using the Taylor expansion and we will consider only linear terms due to
increments and we get

og ") og
| Ay ®+--+— Ay(t)+— Ay(t) +
ay( ) . ay .
+ ‘39 AU @) 4+ B A+ 9] Augr) =0,
au™|, aul, ul,

After modification we obtain the linearized differential equation

a, Ay ™ () +- -+ aAY(t) + a,Ay(t) = b, Au™ (t) +-- -+ b AU(t) + byAu(t), (4.1)

where
=i 90y, =12,
(4.2)
ag
, Ay () = y(t) - Yo,
Q= 8y0 0
=B A @ =), j-12..
au
(4.3)
b, =—29] | Au®) =u(t)-u,.
0

The partial derivatives in equations (4.2) and (4.3) should be calculated for the
operating point (Uo, Yo) which lies on the static characteristics [see (2.5)]

y=f(u),
e
Yo = f(Uo). (4.4)
The linearized static characteristic has the form
Ay(t) =kAu(t) or Ay =kAu, (4.5)
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where the coefficient k; can be determined on the basis of the relations (4.2) and (4.3)

a
ou df by
=2 =— =—, a,#0. 4.6
P09 duly a o
Yl

The geometric interpretation of the linearization of the nonlinear static
characteristic is shown in Fig. 4.1. We can see that it is a tangent line at the operating
point to the original nonlinear static characteristics.

A
YT ay=y-y,
0
Yo $----------4 4
: Operating point = origin of
| incremental coordinates
0 I Uy u

Fig. 4.1 Geometric interpretation of linearization of nonlinear static characteristic

From comparison of the equations (4.1) and (3.1a) it follows that they have the
same form, but the input and output variables are represented by their increments and
coefficients (4.2) and (4.3) depend on the operating point (Up, Yo).

After linearization the linearized static characteristic (4.5) must pass through the
origin of the incremental coordinates (Fig. 4.1).

The output variable can be approximately expressed by the relation
y(t) =y, +Ay(t), 4.7)
where Y(t) is the output variable obtained from the linearized mathematical model.

Now consider the mathematical model of the nonlinear static system with one
output variable y and m input variables us, uy,..., Up.

y=f(u,u,,...,u,). (4.8)
As in the previous case, we use the Taylor expansion and the linearized
mathematical model is determined by the tangent hyperplane

Ay(t) = ilijuj ) (4.93)
=

k=211, j=12,...m. (4.9h)
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When the mathematical model of nonlinear dynamic systems is in the state space
representation (2.8)

X(t) = glx(t), u(v)],
y(t) =h[x(),u®],

then the linearization proceeds similarly. The Taylor expansion is used and the linear
terms with respect to increments are considered only, i.e.

AX(t) = ATAx(t) +bAu(t) } (4.102)
Ay(t) =c’ Ax(t) +dAu(t),
where

AX(t) = x(t), AX(t) = X(t) — X, ,

Au(t) = u(t) - uo, Ay(t) = y(t) - Yo,

A:a—g : bza—g , (4.10b)
Xl au|,

C= a—h , d= a—h .
OX|y ou|y

In all cases it is assumed that the partial derivatives (4.2), (4.3), (4.9b) and (4.10)
exist and are continuous.

The transition from the incremental variables to the absolute variables is given by
relations

90 = Yo + Ay(0), } i

u(t) =uy + Au(t).

Throughout the whole text, if not expressed otherwise, all transfer functions are
considered at the operating point, i.e. it is worked with incremental variables, although
it is not explicitly stated and variables are not referred to as incremental.

Example 4.1

It is necessary to derive a simplified mathematical model of the hydraulic double
acting linear motor with the spool control valve (the valve for continuous flow control)
and to perform the linearization (Fig. 4.2). It is assumed that the compressibility of the
hydraulic fluid is negligible, the pressure loss in the source pipelines and the leakage are
negligible as well. The control valve is described by the nonlinear equation of the static
characteristic in the form (p, = const.)

q(t) =alz(t). p, — p(H)]- (4.12)

In Fig. 4.2 it means: m — the total mass (piston + piston rod + load) [kg], zi(t) —
the input spool displacement [m], z,(t) — the output piston displacement [m], p(t) — the
pressure in the working space [Pa], p, — the source pressure [Pa], A — the area of the
piston (the same for both sides) [m?], b — the coefficient of viscous friction [kg 5], q(t)
— the volumetric flow rate [m® s™], f(t) — the external force [N].
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Plston
b A Z,(t)
Piston r d \ \*
Hydraulic motor )/—K ||
Spool z(t) = \ /

Load

-

m
control ?
valve | r\ Spool

From fluid b ntank
pressure source P,

Fig. 4.2 Simplified scheme of hydraulic double acting linear motor with spool control
valve — Example 4.1

Solution:
Under the above simplifying assumptions, we can write [3, 16]:

force balance

Zz(t) dz,(t)
+b = Ap(t) - f (t), 4.13
e it p(t)-f(t) (4.13)
volumetric flow rate balance
de(t)
t 4.14
it =q(t), (4.14)

control valve static characteristic

q(t) =alz(t), p, - pO].

The position of the piston rod z,(t) corresponding to the middle position of the
piston is the operating point, we mark it as z,.

Because for the increment of the output displacement the equality
AZy(t) =2, (t) — Z,, (4.15)
holds, we can write

dAz,(t) _d2,() d°Az,(0) _ d*z,(0)

= , = 4.16
dt dt dt? dt? (4.19)
The linearized equations (4.12) — (4.14) will have the forms
2
m AZS ©) pdaz) _ AAP(t) - Af (1), (4.17)
dt dt
p920 _ \oy. (4.18)
dt
Aq(t) =k, Az, (t) —k,Ap(t) . (4.19)
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_aa o, __ X
T | (4.20)
Ao = (20, P, — Po) s (4.21)
AZ,(t) =2,(t) — 240, AG(L) =q(t) — G, } (4.22)
M) =F(t)— Ty, Ap(t)=p(t) - po, |

where the quantity z10, Z20, Po, Jo, fo cOrrespond to the operating point or nominal values.
The partial derivative (4.20) must be computed for the operating point.

Assuming zero initial conditions we use the Laplace transform on the equations
and after modification we get.

A 1

AZ,(8)= ms? +bs AP(S) = ms? +bs AR
AQ(s) = AsAZ,(s),
AP() =1 [k, AZ,(5) - AQE)]
p
U (s) = AZ, () AP(S) V(s)=AF(s)
) 1 IR ., 1 Y (52 =AZ,(S)
4 K, " A ms? + bs .
AQ(s) As L

Fig. 4.3 Block diagram of the linearized hydraulic double acting linear motor with spool
control valve — Example 4.1

Based on the block diagram, we can easily determine the transfer functions

Ak,
Y AZ bk, + A? Kk,
Cuy(5) = U((Ss)) - AZz((:)) - E T s(Ts+Y) (4.23)
! L !
bk, + A®
kp
Y AZ bk + A k
Gul)= vg B AFz((sS)) =TTk =TS (4.29
o e _s41 !
bk, + A?
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UL SV WA (4.25)
' bk, +AT T bk, +A?T 7 bk, + A% '

Z

where Ty is the time constant [s], k. — the gain for the input spool displacement [s™], k»
— the external force gain [N m s™].

V(s) =AF(s) K,
s(T;s+1)

Y (S) = AZ,(S)
—>

U(s) =AZ,(s) k,
s(T,s+1)

Fig. 4.4 Simplified block diagram of the linearized hydraulic double acting linear motor
with spool control valve — Example 4.1

On the basis of the transfer functions (4.23) and (4.24) the linearized hydraulic
linear motor with the control valve can be expressed by a very simple block diagram
(Fig. 4.4).

If the pressure p(t) is constant, then k, =0 [see (4.20)] and the substantial
simplification of both transfer functions (4.23) and (4.24) takes place
Y(s) _ AZy(s) _ K,

= - (4.26)
U(s) AZ(s) As

Guy (S) =

@: AZ,(s) ~0

V(s) AF(s) (4.27)

Gvy(s) =

where k1 is the gain [m®s].

The transfer function (4.26) is the simplest mathematical model of the hydraulic
linear motor with the control valve.

4.2 Plant transfer function modification

Mathematical models obtained in an analytical or experimental way are often too
complex. They are mostly mathematical models of controlled systems, i.e. plants or
processes. If a plant’s mathematical model has the form of a transfer function, then it is
possible to simplify it on the basis of its step response or directly by the simple
modification (conversion) of its transfer function.

Plant transfer function modification on the basis of step response

Suppose we can obtain by simulation the plant step response, then it is possible to
use one of the following procedures. All of these procedures can be also used for simple
experimental identification, assuming that the courses of the step responses are properly
made up (by filtering, smoothing, etc.). We work with incremental variables, i.e., all
courses begin at the origin of the coordinates. It is assumed that the time constants
satisfy the condition

T, 2T,

i+11

i=12,..., (4.28)
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i.e. the time constant with lower subscript has greater or equal value than the time
constant with the higher subscript.

The modification of the plant transfer function consists in plotting the step
response and the subsequent determination of its transfer function in the desired form.

If the plant is nonoscillatory proportional and has the step response hp(t) similar to
Fig. 4.5a, the simplest way to identify its transfer function is to determine the substitute
time delay T, = Tq4; and the substitute time constant T,, = T, on the basis of Fig. 4.5a.

K
Gp(s)=—Lt—e T, 4.29
p () Ts+1 (4.29)
where T is the time constant, Ty, — the time delay, k; — the plant gain.
This is the transfer function of the FOPTD (first order plus time delay) plant.

In this way the determined transfer function is very rough. It is used for the
preliminary controller tuning by the Ziegler — Nichols step response method (see
Section 6.2) [2 — 4, 10, 21 — 24, 26, 29, 31].

a) b)
he(t) 4
hp (0) !
/|
O/ T, | Tn t 0 tyss t
P Tp » < t0‘7 »

Fig. 4.5 Plant transfer function determination on the basis of: a) substitute time delay T,
= Tq1 and substitute time constant T, = Ty, b) times tp33 and ty7

Considerably the better way for determination of the transfer function in the form
(4.29) is using the times to33 and to; in accordance with Fig. 4.5b and the following
formulas [22, 26, 29]

T = 1-245(to.7 - t0.33) ~ 1-25(to.7 - to.33)'

(4.30)
T,, =1.498t,,, — 0.498t, , ~1.5t,., —0.5t,- .

These relations are analytically determined. For the normalized step response it
can be written (Fig. 4.6)

he (t)
hp ()

The delayed Heaviside step #(t — Tq1) ensures hp(t) =0 for t < Tg;.

= @-e Tt -Ty).

For values A and B the equations
A=1— e_(tA_le)/Tl

B=1— e_(tB_le)/Tl
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kp (l) &
hp(m)
I
I’/"
Approximate
A step response
B -
,,- .
0
t
< ‘s
tA N

Fig. 4.6 Plant transfer function determination on the basis of times ta and tg

hold, from which the desired formulas are obtained
1
T, = i, —1,),
' In(l- A) - In(1-B) (ts ~ta)
1
le =
In1— A)—-In(1-B)

It is obvious that the values A and B of the normalized step response should be
chosen so they are approximately equal to 1/3 and 2/3, and so that the numerical
coefficients in resultant formulas are easy to remember.

For instance for A = 0.33 and B = 0.7 there is obtained (4.30).
Similarly for A =0.28 and B = 0.63 there is obtained

T, =1.502(tg 63 —t28) #1.5(t63 —to28)

Ty, =1.493t, ,4 — 0.493t, 53 = 1.5t; ,5 — 0.5ty 5.

[ty IN(L— A) —t, In(L— B)].

(4.31)

On the basis of the times to33 and to; it is possible to obtain the transfer function
of the nonoscillatory SOPTD (second order system plus time delay) plant [22, 26, 29]:
k
Gp(s) = —+—eTu* 4.32
P ( ) (TZS +1)2 ( )
where
Ty, =1.937t,,,—0.937t,, . '

The complementary area S over the step response can be used for approximate
verification (Fig. 4.5)
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T,+Ty, = 2T, + Ty, = ——. (4.34)

S
ho() " e (0)
The formulas (4.33) were obtained numerically from the correspondences of the

original step response and the approximate step response in the values hp(0) =0,
hp(to.33) = 0.33hp(0), hp(to7) = 0.7hp(0) and hp(0) [22, 26, 29].

Very good approximation of the step response course of the nonoscillatory
SOPTD plant can be obtained for the transfer function with two different time constants

k
Go(s)= 1 TasS 4.35
»(s) (Tls+1)(Tzs+1)e (4.35)

where

T:%(D2+W/D22—4D12), TZ:%(DZ—W/DZZ—4D12),

T,, =1.937t,,, — 0.9371,-, (4.36)

S

D1 = 0-794(to.7 _to.ss)’ Dz = m -

sz-

The inequality D, > 2D; must hold, otherwise the transfer function (4.32) must be
used.

For fast mutual conversion of the plant transfer functions Tab. 4.1 and the
diagram (4.37) can be used [22, 26, 29].

1 . e—Tdis
(Ts+1)
PN (4.37)
1 e*les <> 1 5 e—szs
Ts+1 (T,s+1)

Tab. 4.1 Table for fast transfer function conversion in accordance with
the diagram (4.37)

—_e—TdiS .
(Tis+1)' i 1 2 3 4 5 6
T1
1 T 1 1.568 | 1.980 | 2.320 | 2.615 | 2.881
e_les TI
T,s+1
M 0 0.552 | 1.232 | 1.969 | 2.741 | 3.537
T . . . . .
T2
1 T T_ 0.638 1 1.263 | 1.480 | 1.668 | 1.838
— € i
(TZS +1)2 T —Tai *
B 0.352 0 0.535 | 1.153 | 1.821 | 2.523

* Applicable for Tg; > 0.352T;.
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Tab. 4.1 was obtained numerically on condition that the values hp(0), hp(to.33),
hp(to.7) and hp(co) of the original and the conversed step responses are the same.

For approximate identification of the IFOPD (integral plus first order plus time
delay) plant with the transfer function

K
Gp(s)=——2t—e @° 4.38
p(S) ST.s+1) (4.38)
it is possible to use its step response (Fig. 4.7), where the time delay is approximately
estimated. If the input step is not a unit, i.e. Au(t) # 7(t), but Au(t) = Aug(t), then it is
necessary to consider the value in brackets.

L

hp ()4

ey

(kiAu)

0l Ty .1, 1

Tat+T,

Fig. 4.7 Integrating plant transfer function determination

Direct transfer function modification

The simplest direct transfer function modification (conversion) is based on the
equality of complementary areas over original and conversed plant step responses.

Nonoscillatory proportional plants

a)
ky - k,
roetfi(rs 1) s+
T+ T+ -
Tz=iTi, T,>>T, i=23,...,n.
i=2
b)
kl ~ kl —Tys
(Ts+l)ﬁ(T-s +1) ) (T13+1)e ,
T (4.40)

n
Td = ZTn T1 >>Ti, i=2,3,...,n.
i=2
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c)
kl ~ kl e—Tds
n )
(T,s+1)T,s+1)[[(T;s+1) (s +1)T,s+1)
i3 (4.41)
n
Tg=>T, T, 2T,>>T, i=34,..,n.
i=3
d)
Ky ~ Ky o Tos
n ~ 2.2
(T0252 +2§0TOS+1)H(T|S+1) TO S +2§OTOS+1
i=1 (4.42)
n
T,=>T, T, >>T, i=12...,n.
i=1
Nonoscillatory integrating plants
k k n
) G~y =T (4.43)
s[](T;s+1) s(Tys +1) i1
i=1
n
b) — kl zﬁe*Tds, Td :ZTi ’ (444)
s[[(Tis+1) 3 i=1
i=1
c)
kl ~ kl e—Tds
s(Ts+1)[](Ts+1) s(Ts+1)”"
=2 (4.45)

n
Ty=2T, T,>>T, i=23...,n.
i=2
It is advantageous to use a combination of the substitute summary time constant

Ty and the substitute time delay Tg, see the "half rule” below.
If in the numerator of the plant transfer function the binomials

1+75s, (4.46)
stand up, then each binomial can be substituted by the term

en® (4.47)
on the assumption that the resulting time delay will be positive.

The fact that in the above simple modifications the equality of the complementary
areas over the origin and the modified plant step responses hold can be easily shown.
They are considered the plant transfer functions

1 1
T,s+1

Gp(s) = p
H(Tis +1)

=G,(s), (4.48)
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Go(s) =~ e =G,(5), (4.49)
H(Tis +1)
T =T,=T,. (4.50)

It is obvious that it holds (see Appendix A)

[x(t)ydt=1lim X(s), (4.51)
0 s—0
where X(s) is the Laplace transform of the time function x(t)

X (s) = [x(t)e *dt.
0

Therefore, for the complementary area over the step response h, (t) it can be
written

n

" 1 1 [I(Ms+1) -1
[[L-hp®]dt =lim| = - ——— |=lim=&_— -
0 NS S[ITs+D | 77 s[[(Ts+1)
[IT)s" +. 43T
= lim =L — i1 3T, (4.52)
o [1(Ts+1) =

For the transfer function G;(s) the complementary area over the step response
h1(t) can be obtained on the basis of the last relation

o0

j[l— h(t)]dt=Ts.
0
For the transfer function G,(s) the complementary area over the step response
h,(t) can be obtained on the basis of the relation

o0 o0

j[l—hz(t)]dt = I[l—n(t -T)ldt=T,.
0

0

Geometric interpretation of the substitute summary time constant Ty and the
substitute time delay Tq is shown in Fig. 4.8.

The substitute step responses hy(t) and hy(t) crosses the original step response hp(t)
at such a point, so that areas S; and S, above and below the corresponding substitute
step response are the same.

The empirical method using the "half rule” is very simple and effective at the
same time [20].
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h®) 4 ht) 4 Tz = ZTi ht)a Ta= ZTi
— i=1 i=1
7 ” P \\’/—
’ S )
T ) ! i 2
hp(t) =~ h,(t) ; “hyt)
= Shl) Thy)
: > _ ’ Sl g ‘L"Sz ~
0 t 0 t 0 t
Fig. 4.8 Geometric interpretation of substitute summary time constant Ty and substitute
time delay Ty

Assuming that the plant transfer function has the form with unstable zeros

H 1L—7405)
| ~TgoS
Gp(s) = —H Tosi0) e e, (4.53)

then on the basis of the " half rule” for the substitute plant transfer function (4.29) we
get
T20 T20
T1=T10+7' Td1=Tdo+7+zTio+ZTjo’ (4.54)

i>3 i
or for the substitute plant transfer function (4.35)

T. T.
T=Te T, =Tzo+%’ sz=Tdo+%+ZTio+ijo- (4.55)

i>4 j
It is obvious, that the equalities
i i

hold, i.e. the "half rule™ conserves the equality of the complementary areas over the
substitute plant step responses and the original plant step response. In these areas it
suitably divides between a time constant and a time delay or among two time constants
and a time delay.

In the case when plant transfer functions have stable zeros the use of the
procedure based on times tp33 and to; is preferable and at the same time it is more
accurate.

Example 4.2
The plant transfer function is
2
Gp(s) = . 4.57
p () (654D (4.57)

It is necessary to modify it in the forms (4.29) and (4.32) on the basis of the
diagram (4.37) and Tab. 4.1 as well as the “half rule” (the time constant is in min).
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Solution:

In accordance with scheme (4.37) and Tab. 4.1 we can write: ky =2, T4 =6,
Td4 =0.
a) The transfer function (4.29)

'IL =2.320 = T, =2.32T, =13.92 =13.9 min,

4

Tu1=Tea _1 969 — T,, =1.969T, =11.814 =11.8 min
4
2 2
Crl) = 511" ~1395+1° o (4.58)
b) The transfer function (4.32)
T2 1480 = T, =1.48T, =8.88=8.9 min,
4
TdZTJ =1.153 = T,, =1.153T, =6.918 = 6.9 min
4
Gy (s) = 2 2 goss (4.59)

(6s+1)*  (8.9s+1)>2

A comparison of the step response obtained from the transfer function (4.57) with
the step responses obtained on the basis of the modified transfer functions (4.58) and
(4.59) is shown in Fig. 4.9.

hp(0) &
2, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(6s+1)* 5 -118s
c
13.95+1

) -6.95

726
/,/ (8.95+1)

L L L L 1 L L L L o

0 50 100 ¢ [min]

Fig. 4.9 Comparison of step responses (Tab. 4.1) — Example 4.2

Now for comparison we simplify the transfer function (4.57) using the "half rule".
For the "half rule” we can write: Tyo = Ty = T30 = T4 =6, Tgo = 0.

a) The transfer function (4.29)
In accordance with the relation (4.54) we get
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— 2 ~ 2 g15s
(6s+1)* 9s+1

b) The transfer function (4.35)
In accordance with the relation (4.55) we get

Gp () (4.60)

T,=T,,=6min, T, :T20+T_Z°:9 min, T, :Td0+T_ZO+T4O =9 min,

_ 2 ~ 2 e—95
(6s+1)*  (9s+1)(6s+1)

Gp(s) (4.61)

A comparison of the step responses is shown in Figure 4.10.

(9s+1)(65+1) ©

r
¥
I
]
[

I
r
vl 1 1 1 1

1 1 1 1 | - .
0 50 100 ¢ [min]

Fig. 4.10 Comparison of step responses ("half rule™) — Example 4.2

Example 4.3
On the basis of the "half rule" the transfer function with the unstable zero

1-s —3s
Ge(8)= (Bs+1)(25+1)7 (4.62)

must be modified in the forms (4.29) and (4.35). The time constants and the time delay
are in seconds.

Solution:
For the transfer function (4.62) we can write: Ti1g=05, Ty =Tz =2, 110 =1,
TdO =3.

a) The transfer function (4.29)
In accordance with the relation (4.54) we can directly write
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T T
T, =Tlo+%=6 S, Td1=Tdo+%+T30+r10 =7s,

Gos)= 25 gy I g (4.63)
(5s+1)(2s+1) 6s+1
b) The transfer function (4.35)
Similarly as in the previous case, in accordance with (4.55) we can write
T30 TSO
T1:T10:53, T2:T20+7:33, szz d0+7+2'10:58,
Go(s) = LTS g L s (4.64)

Bs+1) (25112 (Bst1)@s+1)

A comparison of the step responses is shown in Fig. 4.11.

(@) &
3 USSR
1 -Ts
—C
6s+1 1-5 i e_ss
(5s+1)(25+1)>
1 e-5s
(5s+1)(3s+1) _
___/ L L 1 L L L ! -
0 20 40 t [s]

Fig. 4.11 Comparison of step responses — Example 4.3
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5 CLOSED-LOOP CONTROL SYSTEMS

5.1 Controllers

We will mostly deal with the closed-loop control system (further we will use
mostly the control system) in Fig. 5.1 (see also Fig. 1.3), where the G¢(s) is the
controller transfer function, Gp(s) — the plant (process) transfer function, W(s) — the
transform of the desired variable w(t), E(s) — the transform of the control error e(t), U(s)
— the transform of the manipulated variable u(t), Y(s) — the transform of the controlled
(process) variable y(t), V(s) and Vi(s) — the transforms of the disturbance variables v(t)
and vy(t).

For reasons of simplicity we will very often omit the word "transform”, because it
will be clear from the text whether the transform or the original of the corresponding
variable is concerned.

V(s) Vi(s)
E(s)=W(s)-Y(s
W (s) (s)=W(s)—Y(s) U(s) Y (s)
— G () Gp(S) >

Fig. 5.1 Block diagram of the control system

If the disturbance variables cannot be measured or otherwise specified more
precisely, it is appropriate to aggregate them into a single disturbance variable and place
it in the least favourable position in the control system. In the case of the integrating
plant it is its input and, if the plant is proportional it is its output.

As it was already mentioned in Chapter 1 the control objective can be expressed
in two equivalent forms, see the relations (1.4). For the control system in Fig. 5.1 we
can write:

a) The control objective in the form

y(t) > w(t) = Y(s) >W(s). (5.1)
According to Fig. 5.1 and the linearity principle we can write
Y(s) =G, (SW(s) + G, (s)V(s) + G, (s)V1(9). (5.2)
where
_ G (s)Gp(s)
Guy (8) = 1+Gc (5)Gp (3) 5:3)
is the (closed-loop) control system transfer function,
_ Gp(s) M
G,y (s)= 156 (550 (5) [1-Gyy (S)IGk () (5.4)

and
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1

S e 56

1-G,, (s) (5.5)

are the disturbance transfer functions for the disturbance variables V(s) and Vy(s).

For fulfilling the control objective (5.1) for any desired variable W(s) and any
disturbance variables V(s) and Vi(s) these conditions must hold

G, (s) >1, (5.6)
G,,(s) >0, (5.7)
G,,(s)—>0. (5.8)

The first condition for the control system transfer function (5.6) expresses the
controller function consisting in the tracking of the desired variable W(s) by the
controlled variable Y(s), it is the servo problem. The other two conditions (5.7) and (5.8)
represent the controller function consisting in rejecting disturbance variables V(s) and
Vi(s), it is a regulatory problem [this applies in particular to disturbances V(s)].

From (5.4) and (5.5) it follows, when the condition (5.6) for the control system
transfer function will hold, then at the same time the conditions (5.7) and (5.8) for
disturbance transfer functions will hold.

b) The control objective in the form

e(t) >0 = E(s) >0. (5.9)
According to Fig. 5.1 and the linearity principle we can write
E(8) =Ge (SIW(S) + Gy (S)V (8) + Gy (V1 (9) (5.10)
where
1
G,.(s)= =1-G,, (s 511
O = e O (5.11)

IS the desired variable-to-the control error transfer function or the error control system
transfer function,

_ Gp (S) M
Ge(s) = 1+ 6o (5o (5) [1-G,, (9)]IGk(s) (5.12)
and
1
S NN O R (5.13)

are the disturbance variable-to-the control error transfer functions for the disturbance
variables V(s) and V4(s).

The transfer functions (5.3) — (5.5) and (5.11) — (5.13) are the basic transfer
functions of the given control system. The first or the second triad of the transfer
functions describes the control system uniquely.

For fulfilling the control objective (5.9) for any desired variable W(s) and any
disturbance variables V(s) and Vi(s) these conditions must hold
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G,.(s) >0, (5.14)
G,.(s) =0, (5.15)
Gy (s) —0. (5.16)

Similarly as in the previous case the first condition for the desired variable-to-the
control error transfer function (5.14) expresses the controller function consisting in the
tracking of the desired variable W(s) by the controlled variable Y(s) (the servo problem).
The other two conditions (5.15) and (5.16) represent the controller function consisting
in rejecting the disturbance variables V(s) and Vi(s) (the regulatory problem).

From (5.11) — (5.13) it also follows, when the condition (5.6) for the control
system transfer function will hold, then at the same time the conditions (5.14) — (5.16)
will hold.

We see that both control objective formulations (5.1) and (5.9) are equivalent to
each other and it is obvious that if the condition (5.6) for the control system transfer
function will hold, all conditions, i.e. (5.7), (5.8) and (5.14) — (5.16) will hold too.

Therefore, we will further deal mainly with the control objective (5.1) and main
attention will be paid to the control system transfer function (5.3).

The control system frequency transfer function has the form
Gc(j®)Gp(jo) 1

Gyy (j©) =Gy )| _,, = T+ 6o (1005, (1) : » (5.17)
G (jo)Gp (jo)
and it is obvious that the relations hold
E:((jjfo))): OO} =G, (j0) >1= G, (5) >1, (5.18)
or
G (j@)Gp (jo)| > 0= G, (jo) >1=G,, (s) > 1. (5.19)

From relation (5.18) it follows that if a sufficiently high value of the modulus of
the frequency controller transfer function will be ensured

Ac (@) =mod G (jo) =[G (jo)|, (5.20)
then conditions (5.6) and (5.8) will be held with sufficient accuracy and for the
nonsingular Gp(s) the condition (5.7) will be held as well.

If the plant properties given by the plant transfer function Gp(s) will be known,
then it is easier to ensure a sufficiently high value of the modulus of the frequency
open-loop control system transfer function

A, (@) =mod G, (jw) =[G, (jo)| = |G (10)Ge (jo) (5.21)
see relations (5.19).

High values of the modules Ac(w) or A,(w) must be ensured in the operating
range of angular frequencies while ensuring stability and the required control process
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performance. This can be achieved by an appropriately selected controller and its
subsequent proper tuning.

Industrial controllers are available in different versions and modifications, and
therefore the basic structures and modifications of the commonly used conventional
controllers will be presented [2-6,9 - 11,1317, 19 — 31].

Analog (continuous) conventional controllers are implemented as a combination
of three basic components (terms): proportional — P, integral — | and derivative — D.
The controller which consists of all three components is called the proportional plus
integral plus derivative controller or for short the PID controller and its properties in
the time domain can be described by the relation

U(t)_ pe(t)+Kje(z')d +K dE(t)
e e -

_ K [e(t)+_|_—je(r)d T, dgf) ,

10

where Kp, K, and Kp are the proportional, integral and derivative component
weights, Kp — the controller gain (the proportional component weight), T, and Tp — the
integral and derivative time constants.

Some industrial controllers instead of the gain Kp use the inverse value

100
[

pp =" [%] (5.23)

P
called the proportional band.

The parameters Kp, K; and Kp, or Kp, T, and Tp are the controller adjustable
parameters. The task of controller tuning is to ensure the required control performance
process by selecting the appropriate values of the controller adjustable parameters for
the given plant.

Among the controller adjustable parameters the conversion relations hold

K, :%, Ko =KpTp, (5.24)
|
or
T, :&, T :&_ (5.25)
K, Kp

Since the proportional component weight Kp is identical to controller gain Kp, and
also in its name, the controller gain is often used.

Using the Laplace transform and assuming zero initial conditions from relation
(5.22) the PID controller transfer function is obtained

V) i Kk s— Kol 142 4T ). (5.26)
E(s) S T,s

|
Fig. 5.2 shows the modules of the components P, | and D of the PID controller.
From Fig. 5.2 it follows that the integral component (1) provides a high modulus of the

Ce(s)==,3
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frequency PID controller transfer function at low angular frequencies and especially at
steady state (w = 0), the derivative component (D) at high angular frequencies and the
proportional component (P) over the entire operating range of angular frequencies, but
especially for middle angular frequencies. Just by using the appropriate choice of
components P, I and D, i.e., by the appropriate choice of values of controller adjustable
parameters Kp, K; and Kp, or Kp, T; and Tp there can be achieved a high modulus of the
frequency controller transfer function (5.20) or the modulus of the frequency open-loop
control system transfer function (5.21), and thus fulfilment of the conditions (5.18) or
(5.19).

A KP _ﬁ
e (@) ‘T, jo| To KoTp jo] = KpTp@
Ki|_Kp |KDja)|:KDa)
jo| o
I D

/
P [Ke|=Kp

0 a):

Fig. 5.2 Courses of component modules of PID controller

Tab. 5.1 Transfer functions of conventional controllers

Type Transfer function
Ge ()
1 P Kp
) | 1
T,s
3 Pl Kol 1+ —
P( T,sj
4 | PD Kp(L+Tps)
5 PID K 1+L+Ts
P T|S D
6 | PID; Kp 1+i(1+Tgs)
T/s
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In practice, simpler controllers are used (relations with time constants are
considered only): the P (proportional) controller, the | (integral) controller, the PI
(proportional plus integral) controller and the PD (proportional plus derivative)
controller. The transfer functions of conventional controllers are transparently brought
out in Tab. 5.1 (the rows 1 —5). A controller with just a derivative component cannot be
used because it reacts only at the time change of e(t), i.e. é(t), therefore it causes

disconnection of the control loop in the steady state.

A block diagram of the PID controllers with the transfer function (5.26) is shown
in Fig. 5.3a, which shows that it has a parallel structure. For such type of PID controller
all the adjustable parameters can be set independently, and therefore controllers with a
parallel structure are also called PID controllers without interaction (non-interacting).

a)

E(s YU
(s) < 1 5 (52
T,s

b)

U (s)>

1
T/s

—> T.S

Fig. 5.3 Block diagram of PID controller with structure: a) parallel (without interaction),
b) serial (with interaction)

Sometimes the form (5.26) with weights is only considered as a parallel form of
the PID controller and the form with time constants (Fig. 5.3a) is often called the
standard form according to ISA (The International Society of Automation, formerly
the Instrument Society of America).

A PID controller can be also realized on the basis of the serial (cascade) structure
(see Fig. 5.3b). Its transfer function has the form

Ge(s) = Kol 1+ = |1+ Tg5)= Ky (T8 DTo8 D). (5.27)
T|S Tff T|S

which can be rewritten on the parallel structure (5.26)
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Gc(s)=K'T “To g ,1+ LILERY (5.28)
T/ T/ +T5 T/ +T5
— %r—“ —
Kp 1 To
Tl

From equation (5.28) it is obvious that when the values of the integral time T, or
derivative time TJ are changed then all adjustable parameters Kp T, and Tp
corresponding to the parallel (standard) structure change their values, i.e. there is an
interaction between the adjustable parameters. Therefore the PID controller with a serial

structure is also called the PID controller with interaction (interacting) and is referred
to as the PID; controller (see Tab. 5.1, row 6).

Among the adjustable parameters of the parallel and the serial structure the simple
conversion relations hold [2, 26, 29]:

Ko=Kpi, T =Tii,  To=-2, i=1+:E, (5.29)
! |

, , , T 1 1 7T

K =Kp8, T/=T,5, TD=?D, ﬂ=§+ Z—#. (5.30)

The coefficient i is also called the interaction factor. The values of the adjustable
parameters Kp, T, and Tp of the PID controller (without interaction) are the effective
values, since most controller tuning methods assume the standard parallel structure of
the PID controller (Fig. 5.3a), and therefore the values of the adjustable parameters K,

T/ and TS of the PID; controller (with interaction) should be converted into the
effective values on the basis of the relations (5.29), i.e. on the Kp, T, and Tp.

For the PID controller with a serial structure, i.e. for the PID; controller the
restriction
T 1

o 1 5.31
T, 4 (:31)

exists which is not however essential [see formula for 5 (5.30)].

The serial structure of the PID; controller has its advantages. It simply can be
realized, e.g. as a serial interconnection of the PI and the PD controllers, see Fig. 5.3b
and relation (5.27). Its production is also cheaper. Realization of the PID; controller on
the basis of the operational amplifier is shown in Example 3.5. For T} =T, =0parallel

and serial structures are equivalent to the PI controller.

From a theoretical point of view the derivative component has a positive
stabilizing effect on the control process. From a practical point of view, however the
derivative component has a very unpleasant property, which consists of amplifying a
high frequency noise (see Fig. 5.2), and quick changes. For instance if the derivative
component of the PD or PID controllers

de(t) de(t)
dt dt

processes the control error e(t), which contains harmonic noise with the amplitude as
and the angular frequency ws, i.e. [2]

Kp—2=KpTp —2 (5.32)
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e(t) +agsinaxt,
then the derivative component (5.32) output is

de(t)

KeTol=

+ agwg COS wst], (5.33)

where m
dt

Is the useful part of the derivative component and aqwg Coswst is the

parasite part of the derivative component.

From the relation (5.33) it follows that for higher angular frequencies ws the
parasite part will dominate over the useful part and the derivative component output can
cause an incorrect controller function and even in the whole control system. This is why
the ideal derivative operation is practically unusable. An internal filter of the derivative
component with the transfer function

1 1 1

_ Caol (5.34)
TD s+1 OCTDS +1 N

is used, where N=5+20 or a =0.05 + 0.2 [2, 17, 22, 24 — 26, 29].

The task of the internal filter is to attenuate the parasite noise, which the
controlled variable y(t) mainly contains. When the values of a < 0.1, then the internal
filter does not fundamentally affect the final properties of a controller, and it is not
therefore usually considered during controller tuning. In industrial controllers the
internal filter (5.34) is usually preset to « = 0.1 (N = 10) [2, 4, 22, 29].

The transfer function of the PID controller with the internal filter has the form

1 T-5S
G~-(s8)=K,|1+—+—2P ) 5.35
c(s) "( T,s aTDS+1j (535

Conventional controllers given in Tab. 5.1, even with internal filter (5.35), allow
such tuning which ensures the desired control process performance only from the point
of view of the desired variable w(t) and the disturbance variable v,(t) acting on the plant
output.

If disturbance variable v(t) is acting on the plant input, a compromise tuning is
usually used. Problems arise when the plant has an integral character, then a
compromise tuning is not possible [22, 25, 29, 30]. In this case, it is appropriate to use
the controller with two degrees of freedom (2DOF controllers).

For instance properties of the ideal 2DOF PID controller are described in what is
called the ISA form (Fig. 5.4) [2, 22, 29]

Uu(s)= KP{bW (s)-Y(s)+ T_ls[W(S) =Y (S)]+Tps[cW (s) —Y(s)]}, (5.36)

where b is the set-point weight for proportional component, ¢ — the set-point weight for
derivative component.

Both weights can change in the range from 0 to 1. For b = ¢ = 1 the relation (5.36)
expresses the equation of the conventional PID controller (the 1DOF PID controller),
see the relation (5.26).
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_______________

W(s)

iR

Vi (s)
Y(s)

Fig. 5.4 Block diagram of the 2DOF PID controller corresponding to relation (5.36)

The relation (5.36) can be rewritten in the form
U (8) = Gg (8)Gc (S)W(8) =G (S)Y (5)

CT,Tps? +bT,s+1

Ge(s) =

Gc(s) =Kp

TTos?+T,s+1

Tis I

2
T,Tos +T'S+1=Kp(1+Ti+TDSJ,
S

(5.37)

(5.38)

(5.39)

where Gg(s) is the input filter transfer function, G¢(s) — the conventional (1DOF) PID
controller transfer function.

The block diagram in Fig. 5.5 corresponds to the relation (5.37).

2DOF controller

—> Ge(s)

Gc (S)

Gp(S) |

___________

_________________________

Vi (s)
Y (s)

Fig. 5.5 Block diagram of 2DOF PID controller corresponding to relation (5.37)

From Fig. 5.5 it is clear, that the PID controller with the transfer function G¢(s)
[(5.39)] is tuned with regard to quickly attenuate the negative influence of the
disturbance variable v(t) (the regulatory problem) and by the appropriate choice of
weights b and c the input filter with the transfer function Gg(s) is tuned [(5.38)] from the
point of view of the changes of the desired variable w(t) (the servo problem). For b =c¢
=1 = Gg(s) = 1 and the control system in Fig. 5.5 there are the properties of a control
system with a conventional PID controller, i.e. with a controller with one degree of

freedom (1DOF).
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When using a controller with an integral component and with the manipulated
variable limiting (i.e. in the presence of saturation), a very unpleasant phenomenon
appears — the so-called windup (the ongoing integration). Fig. 5.6 explains it.

Since the transforms of variables and the originals of variables stand out at the
same time in Fig. 5.6, all variables are thereby represented by small letters without
specifying independent variables.

Precaution against the windup is called antiwindup and it can be realized as
shown in Fig. 5.6a. Fig. 5.6b shows that when u;(t) exceeds the value of u(t) = uy, a
negative feedback takes effect (Fig. 5.6a) and the input of the integrator is reduced with
the value afuy(t) — u(t)] and it causes a drop in the growth of the output value of the
integrator u(t). The courses uy(t) and u(t) in Fig. 5.6b show that the implementation of

the antiwindup caused the significant reduction windup delay T,'. The windup delay

T4 is the main reason of a prolonged overshoot in the control system, and thereby a

deterioration of control process performance. The value of a (Fig. 5.6a) must be
sufficiently large, as is apparent from Fig. 5.6b.

a)
e 1 U u
E - % >
a <
b)
A , ul(t)
el -
} %> —
AR s S
€p i :
—ept O a t2 fs/\s\ f
e(1)

Fig. 5.6 Integral controller with antiwindup: a) block diagram, b) courses of variables

The realization of the PI controller with the antiwindup is shown in Fig. 5.7.
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) 4

e 1 u
e Tys 7‘ —'

Fig. 5.7 Realization of the PI controller with antiwindup

a)
Ay(t) .
e 2
. /{3& _____
0 =
b)
0 i i I i f=

Fig. 5.8 Courses of controlled variable a) and manipulated variable b) in a control
system with I controller: 1 — linear, 2 — with saturation and without antiwindup, 3 — with
saturation and with antiwindup
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The courses of controlled variable and manipulated variable in the control system
with the I controller are shown in Fig. 5.8 for three cases. The first case — without the
saturation (the linear control system) — course 1, the second case — with the saturation
and without the antiwindup (the nonlinear control system) — course 2, the third case —
with the saturation and with the antiwindup (the nonlinear control system) — course 3.
From Fig. 5.8 it is clear that manipulated variable limiting causes a slow response.
Manipulated variable limiting usually has a stabilizing effect, but if an antiwindup is not
used, the control process performance is significantly reduced.

The ongoing integration — the windup acts primarily in analog controllers. In
digital controllers the antiwindup is simply dealt with by stopping the integration
(summation) at saturation.

5.2 Stability

The stability of the linear control system is its ability to stabilize all variables at
finite values if the input values are fix ed at finite values. The input variables in the
control system are the desired variable w(t), and any disturbance variable, often
aggregated into a single disturbance variable v(t) or vy(t).

It is obvious that the following stability definition is equivalent. The linear
control system is stable if the output is always bounded for any bounded input. It is
called BIBO stability (bounded-input bounded-output).

From both stability definitions it follows that stability is a characteristic property
of the control system, which does not depend on inputs or outputs (it does not hold for
nonlinear control systems).

Since the control system (Fig. 5.1) is fully described by the equation
Y (s) =G, (W () + G, (S)V () + G, (S)V1(5) (5.40a)
or
E(S) =Gye ()W (5) + Gy (S)V (5) + Gy (SIV1(S), (5.40b)

it is clear that the stability must be given by a term which figures in all basic control
system transfer functions Guy(s), Gw(S) and Gyiy(S) or Gwe(S), Gue(s) and Gyae(s). From
the basic control system transfer functions (5.3) — (5.5) and (5.11) — (5.13) it follows
that this term is their denominator

Mo(s) _ No(s)+Mq(s) _ N(s)
Nos)  No(s)  Ny(s)'

where Go(S) is the open-loop control system transfer function (it is generally given by
the product of all transfer functions in the loop), No(s) — the characteristic polynomial of
the open-loop control system (the denominator of the open-loop control system transfer
function), My(s) — the polynomial in the nominator of the open-loop control system
transfer function.

1+ Gg (5)Gp () =1+ G, (s) =1+ (5.41)

The polynomial
N(s)=N,(s)+M,(s) (5.42)

is called the characteristic polynomial of the control system and after its equating to
zero the characteristic equation of the control system
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N(s)=0 (5.43)
is obtained.

The characteristic polynomial (5.42) figures in the denominator of each basic
control system transfer function after its arrangement, and therefore it is at the same
time the characteristic polynomial of the differential equation describing the control
system.

We show that a necessary and sufficient condition for the stability of the linear
control system is that the roots si, Sy, ..., Sp Of its characteristic polynomial (or its
characteristic equation)

N(s)=a,s" +...+a5+a, =a,(5—5)(5—S,)...(s—5,) (5.44)
have negative real parts, i.e. (see Fig. 5.9)
Res, <0, for i=12,...,n. (5.45)

The negativity condition (5.45) for the real parts of the roots of the
characteristic polynomial of the control system (5.42) or, equivalently, for the real
parts of the roots of the characteristic equation of the control system (5.43) is a
necessary and sufficient condition for the (asymptotic) stability of the control system.

Since the concept of stability of the nonlinear control system has a somewhat
different meaning, it is necessary, if there could be a misunderstanding, when the
necessary and sufficient conditions for stability of the linear control systems hold to use
a more precise concept of “asymptotic” stability.

It should be noted that complex roots (poles) always come in complex conjugate
pairs (i.e. in the symmetry in the real axis in the complex plane s).

It should also be noted that the roots sy, S, ..., S, are at the same time the poles of
the basic control system transfer functions (i.e. the poles of the control system). This
does not apply to the zeros of the basic control system transfer functions. The poles of
the control system are determined for their dynamic properties.

Now we will show how the necessary and sufficient condition for stability of the
control system (5.45) can be obtained.

Consider any basic control system transfer function, e.g. the control system
transfer function

M (s)
G, (s)=—+= 5.46
wy (S) N(S) (5.46)
and the desired variable transform
W(s) = M ’ (5.47)
N, (s)

where M(s), My(s) and N,(s) are the polynomials and N(s) is the characteristic
polynomial of the control system.

Assuming that the characteristic polynomial of the control system N(s) has the

simple roots sy, Sy, ..., Sp and the polynomial Ny(s) has the simple roots s',s;,...,s)

85



VITECEK, A., VITECKOVA, M. Closed-Loop Control of Mechatronic Systems

[p is the degree of the polynomial Ny(s)], the controlled variable transform — the
response transform

M(s) M, (s)
Y(S)=G W (s) = 5.48
(5) =Gy (S)W (s) N(S) N..(5) (5.48)
can be written as the sum of partial fractions (see Appendix A)
n Ai P B.
Y(s)=2 + 2 =Y (s) +Ys(s), (5.49)
i=1S—S5; j=1S—S;

N J
Y1 (s) Y (s)

where Y+1(s) is the transform of the transient response part, Ys(s) the transform of the
steady response part.

The original of the controlled variable y(t) can be obtained from (5.49) on the
basis of the Laplace transform

YO = y; )+ ys ) =3 A e + 3B et (5.50)
i=1 j=1

The constants A; and B; in the relations (5.49) and (5.50) generally depend on the
form of the control system transfer function Gyy(s) and the desired variable W(s), see
(5.46) and (5.47).

The course of the transient response part of the controlled variable yr (t) depends
on the roots of the characteristic polynomial of the control system, i.e. of its poles and it
is given by relation

yr(t) = Zl Al (5.51)
The course of the steady response part of the controlled variable
P s¥'t
]:

is given by the course of the desired variable w(t).

Here, the steady course means the given general time function, e.g. ys(t) = Bt,
ys(t) = Bsinwt , etc. contrary to the steady (idle) state, e.g. ys(t) = ys = const.

From relation (5.50) it follows that for the bounded input variable — the desired
variable w(t) (Res} <0 for j =1, 2,..., p) the output variable — the controlled variable

y(t) will be bounded if and only if its transient response part y(t) will be bounded, i.e. if
the condition (5.45) will hold. Therefore for a stable control system the transient
response part must vanish for an increasing time t, i.e.

tIim yr (1) =0, (5.53)
hence for t — oo it holds
y(t) > ys (). (5.54)
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The last relation shows that the control system stability is its ability to stabilize the
output — the controlled variable y(t) — ys(t) at the steady-state input — the desired
variable w(t) — ws(t).

For the control system from the control objective y(t) — w(t) the obvious
requirement follows ys(t) — ws(t).

ImA @

% .
O

\W\T

f
<‘~
\.
\

X
X
X
>

X
v

Fig. 5.9 Influence of control system pole placement on the course of transient response

It is obvious that all conclusions will also apply for the multiple roots of the
polynomials N(s) and Ny(s) in equation (5.48), because adding negligibly small
numbers to multiple roots changes them at simple roots and the small change cannot
significantly affect the properties of the control system.

The influence of control system pole placement on courses of transient responses
is shown in Fig. 5.9. It should be noted that the oscillatory response is caused by the
complex conjugate pair of poles.

For a control system with a time delay the open-loop transfer function has the
form [compare with (5.41)]

G,(s)=—2"= Mo(S) s (5.55)

N, (s)

from which the characteristic quasipolynomial of the control system can be obtained
[compare with (5.42)]

N(s)=N,(s)+M,(s)e ™. (5.56)

The characteristic quasipolynomial (5.56) has an infinite number of roots, i.e. the
control system with a time delay has an infinite number of poles. Therefore verifying
the fulfilment of the necessary and sufficient condition for stability (5.45) by direct
calculation is unrealistic.

The stability of the control system is a necessary condition for its proper
operation. For stability verification a wide variety of criteria is used, which allow to
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check the fulfilment of inequality (5.45) without the labourously calculating the roots of
the characteristic polynomial or quasipolynomial of the control system N(s).

Three stability criteria will be introduced without derivation: Hurwitz, Mikhailov
and Nyquist.

Hurwitz stability criterion

The Hurwitz stability criterion is an algebraic criterion, and therefore it is not
suitable for control systems with a time delay (the exponential function is not an
algebraic function). However, it can be used for approximately verifying stability when
the time delay is represented by an approximation in the form of a rational function, e.g.
(3.54) or (3.55).

The Hurwitz stability criterion can be formulated in the form:

,»The linear control system with the characteristic polynomial
N(s)=a,s"+...+aS+a,
is (asymptotically) stable [i.e. the inequalities (5.45) hold] if and only if, when:

a) all coefficients ag, as,..., a, exist and are positive (it is the Stodola necessary
stability condition, it was formulated by a Slovak technician A. Stodola)

b) the main corner minors (subdeterminants) of the Hurwitz matrix

a,, a,; 8,5 ... O]
a, a,, a,4 ... O
H=0 a4, a3 ... 0] (5.57)
0 0 0 ... 4
a a
Hy=a,, Hy=| """ "% ..., H, =|H]|
an a‘n—2

are positive.*

Since the equalities H; = a, 1, Hy = agHn 1 hold, it is enough to check only the
positiveness of H,, Hs, ..., Hy 1. The zero value of one of Hurwitz minors indicates the
stability boundary. For instance, if ap = 0, then one pole is zero (it is the origin of the
coordinates in the complex plane s). This case characterizes the nonoscillating stability
boundary. If H,.; = 0, then the two poles are imaginary (the poles are on an imaginary
axis in symmetry by the origin in complex plane s). This case characterizes the
oscillating stability boundary, see Fig. 5.9

If the Stodola necessary stability condition holds, then the simplified Lineard-
Chipart stability criterion can be used, which consists only in checking the
positiveness of all odd or all even Hurwitz minors.

The disadvantage of the Hurwitz stability criterion is its computational complexity
forn>5.
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Mikhailov stability criterion

The Mikhailov criterion is a frequency stability criterion with a very wide field of
use. Here it will be shown as a simple formulation suitable for control systems without a
time delay.

The Mikhailov stability criterion is based on the characteristic polynomial of the
control system N(s) from which after substituting s = jw the Mikhailov function is
obtained

N(jw)=N (s)|s=jw =Np(@) + jN o(@), (5.58)
where

N (@) =ReN(jo) = a, —a,0° +a,0" —... (5.59a)
is the real part and

N (@) = IMN (jo) = a,0—a,0° +a;0° —... (5.59Db)

Is the imaginary part of the Mikhailov function.
Its plot is called the Mikhailov hodograph (curve, characteristic).
Now the Mikhailov stability criterion can be formulated in the form:

"The linear control system is (asymptotically) stable if and only if its Michailov
hodograph N(jew) for 0 < @ < oo begins on the positive real axis and successively passes
through n quadrants in a positive direction (counter-clockwise)."”

This formulation can be written for a change of the Mikhailov function argument
A arg N(jo) :nz, (5.60)
0<w<oo 2
where n is the control system characteristic polynomial N(s) degree.
The courses of the Mikhailov hodographs for stable control systems are shown in
Fig 5.10a and for unstable control systems in Fig. 5.10b.

b) Unstable control systems

a) Stable control systems Im
A
Im ,
4_60 % w —>0 ﬁ);aoo
n=2 N n=1 Q
// ©=0
> B> &
/ 0 EY Re o/ Re
W —>0 W —>®© ® —>%
n=3 n=3 A n=4
\> %):4.00 n=1

Fig. 5.10 Courses of Mikhailov hodographs for control systems:
a) stable, b) unstable
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4  Stable control system Unstable control system

N; (@)

Np ()

d, 2
w,=0, o= Q
0 ol

Fig. 5.11 Courses of real part Np(ew) and imaginary part No(w) of the Mikhailov
hodograph for n =5 for control system: a) stable, b) unstable

From the courses of the Mikhailov hodographs for stable control systems in Fig.
5.10a it follows that for 0 < w < o the imaginary part Ng(w) and the real part Np(w) of
the Mikhailov hodograph are successively equal to zero [the imaginary part No(w) when
passing through the real axis and the real part Np(w) when passing through the
imaginary axis], hence the Mikhailov stability criterion can be formulated in an
equivalent form (Fig. 5.11):

"The linear control system is (asymptotically) stable if and only if Np(0) =ao >0
and if for 0 < w < oo roots of Ng(w) and Np(w) alternate with each other."

The advantage of this formulation is that it can be written analytically:

dNe (@) _dNo(0) o

Np (@), = Np(0)>0,

do |w:0 do 61
V@] =Ng@=0, Ne@] _dNe@ (561
Q w=0 Q ’ do e do

No(@)=0 = & =0<m;<ws<...

=>w=0<w,<w,<w, <...(5.62
NP<O>=ao>0,Np(w)=O:w2<a)4<..} “ 2 <03 <, <...(5.62)

It is clear that the number of roots w; is equal to the control system characteristic
polynomial N(s) degree n.

If the control system is on the nonoscillating stability boundary than Np(0) = ap =
0 and the Mikhailov hodograph begins from the origin of coordinates. On the other
hand, if Np(0) =a, >0 and the Mikhailov hodograph passes through the origin of
coordinates, then it is on the oscillating stability boundary, see Fig. 5.12. In this case,
the real part Np(w) and the imaginary part No(w) are zero at the same time. This
property of the Mikhailov hodograph (function) can be advantageously used for the
analytical determination of the ultimate (critical) angular frequency w. and other
ultimate parameters, which most frequently is the ultimate controller gain Kp. or the
ultimate integral time Tc.

These ultimate parameters cause the control system to be on the stability
boundary, i.e. in the critical state between stability and instability. In this case, just a
slight change of these parameters causes that the control system will be stable or
unstable. For this reason, when verifying control system stability on the basis of various
approximations the results must be always accepted very carefully.
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@ —>0
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Nonoscillating Oscillating stability
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® —>0
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Fig. 5.12 Courses of Mikhailov hodographs for the control system on the stability
boundary

The geometric formulation of the Mikhailov stability criterion is appropriate in
this case, when the characteristic polynomial coefficients are specified numerically,
otherwise it is always preferable to have an analytical formulation.

The Mikhailov stability criterion in the above two formulations may also be used
for the approximate stability verification of control systems with a time delay, assuming
that the time delay is approximated by a rational function, e.g. (3.54) or (3.55).

Nyquist stability criterion

The Nyquist stability criterion is the frequency criterion, and unlike the Hurwitz
and Mikhailov criteria it is based on the properties of the open-loop of the control
system and it is suitable for control systems with a time delay. It may even be extended
to some nonlinear control systems.

The control system in Fig. 5.13 is considered. It is clear that when oscillation
arises with a constant amplitude and a constant angular frequency on the stability
boundary [W(s) = V(s) = 0] it is necessary that oscillation in the feedback path must be
the same as oscillation in the forward path but with a negative sign, see Fig. 5.13. It can
be expressed with the transfer functions

e(t)
JQUDUE V(s)
E Y
WH?—»(S) ook GMS)»%—«—S)

T+ >

y(tﬁ
t

Fig. 5.13 Control system on the stability boundary

G,(s)=-1 = G,(jm,)=-1, (5.63)

where Go(s) = G¢(s)Gp(s) is the open-loop (control system) transfer function (it is
generally given by the product of all transfer functions in the loop), w. — the ultimate
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angular frequency.

It is obvious that the open loop is stable (otherwise the occurrence and duration of
the constant oscillation in the control loop is not possible).

For the control system in Fig. 5.13 the relation (5.63) expresses the condition for
the oscillating stability boundary. This condition can be obtained on the basis of the
same denominators of the basic transfer functions [e.g. see (5.3) — (5.5) and (5.11) —
(5.13)], where the term 1 + Go(s) appears. It is clear that the critical state occurs when
that term is equal to zero, which corresponds to (5.63).

The relation (5.63) expresses the fact that if the linear control system is on the
oscillating stability boundary, then the frequency response of the stable open control
loop passes through the point -1 on the negative real half-axis.

The point -1 on the negative real half-axis is called the critical point and the
open-loop frequency response is called the Nyquist plot.

Now we can formulate the Nyquist stability criterion:

"The linear control system is (asymptotically) stable if and only if when the
frequency response of the stable open-loop control system, i.e. the Nyquist plot Go(jw)
for 0 <@ <o does not surround the critical point (-1 + jO) on the negative half-axis."

The main cases of the Nyquist plots G,(jw) for a stable open-loop and g = 0 due to
the critical point (-1 +j0) are shown in Fig. 5.14. The integrating elements in the
forward and feedback path (i.e. in the loop) from the point of view of the Nyquist
stability criterion are not considered as unstable (they are in fact neutral elements).
Their number is denoted by the letter g and it is called the control system type. In this
case, when there is a decision on whether the Nyquist plot surrounds or does not
surround the critical point (-1 + j0O), it is necessary to connect this plot with a positive
real half-axis by a circle of an infinitely large radius (shown dashed), see Fig. 5.15.

0

q =
Critical point

S
I
8

Stable
On stability boundary
Unstable

Fig. 5.14 Nyquist plots G,(jw) for the stable open-loop and q =0

If the Nyquist plot G,(jow) for q=2 has the course as in Fig. 5.15, then
conditional stability occurs, because decreasing or increasing the value A,(w) for the
phase —t may cause instability of the control system.

92



VITECEK, A., VITECKOVA, M. Closed-Loop Control of Mechatronic Systems

The geometric form of the Nyquist stability criterion has been formulated above.

The analytical form can be very useful too. It is necessary to introduce the gain
crossover angular frequency g, Which is defined by the equality (Fig. 5.16)

(5.64)

Ay (@y) =1
and the phase crossover angular frequency w,, which is defined by the equality (Fig.
5.16)
Pol@,) =—7. (5.65)
The angular frequency w, can be also determined from the relation
ImG,(jw,) =0. (5.66)
For the oscillating stability boundary the relation holds
@, =Wy =, (5.67)
Now the Nyquist stability criterion can be written analytically in some of the
forms:
Go(iw,) =ReG,(jw,) > -1, (5.68)
A (@,) <1, (5.69)
Polwy) > -7 (5.70)

Stable control
systems

Re

!
8

Fig. 5.15 Nyquist plots G,(jw) for stable open-loop and prog=1and q=2
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— = Ay(@p)
C e
1
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7 /10 Re
(00(509)
Wg
— -1
g 1a)—>0

Fig. 5.16 Gain margin ma and phase margin y

It is obvious that the simple analytical formulation of the Nyquist stability
criterion (5.68) — (5.70) applies to unconditionally stable control systems. For
conditionally stable control systems it can be easily extended.

Very important indices can be defined on the basis of the angular frequencies wg
and wy, (Fig. 5.16):

the gain margin

1
m.— (5.71)
" A(@y)
and the phase margin
Y =7 +@,(@y) - (5.72)

The gain margin ma expresses how many times the value of Ao(wp) can be
increased (how many times the open-loop gain k, can be increased) in order for the
control system to reach the stability boundary. Similarly, the phase margin y expresses
how much the phase ¢o(wg) (in the absolute value) can be increased in order for the
control system to reach the stability boundary.

Since the controller integral component brings into the open-loop of the control
system a negative phase, i.e. it reduces the phase margin y, therefore the controller
integral component destabilizes (it deteriorates a stability) the control system. In
contrast, the controller derivative component brings into the open-loop of the control
system a positive phase, i.e. it increases the phase margin y, therefore the controller
derivative component stabilizes (it improves a stability) the control system (of course
for a suitable filtration).

As regards the controller proportional component, which is expressed by the
controller gain Kp, it is clear that by increasing the controller gain Kp, the open-loop
gain Kk, increases and thus reduces the gain margin my, therefore the controller
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proportional component destabilizes the control system. Conditionally stable control
systems are an exception.

The time delay is extremely dangerous for the stability of the control system. Its
frequency transfer function has the form

G(jw)=e 1 = A(w)e!, (5.73a))
Alw) =1, (5.73b)
p(o)=-Tyo. (5.73c)

From relations (5.73) it is obvious that the time delay does not change the
modulus [see (5.73b)], but it linearly increases the negative phase by increasing angular
frequency [see (5.73c)], i.e. it reduces the phase margin y. Therefore, the time delay
always significantly destabilizes the control system.

The given formulations of the Nyquist stability criterion applies only to stable
open-loop control system, and therefore it is necessary at first to check the stability of
the open-loop control system and then to proceed to the verification of closed-loop
control system stability.

The Nyquist stability criterion for unstable control systems can be formulated in
the form:

"The linear control system is (asymptotically) stable if and only if when the
Nyquist plot Go(jw) of the unstable open-loop control system with p unstable poles
surrounds the critical point (-1 +jO) in the positive direction (counter-clockwise) p/2
times (i.e. px).”

Example 5.1
The characteristic polynomial of the control system has the form
N(s)=a,s* +a,;s+a,.

On the basis of the Hurwitz stability criterion it is necessary to determine the
conditions for the coefficients ag, a; and a,, which ensure the stability of the control
system.

Solution:
a) From the necessary Stodola condition it follows: ap > 0, a; > 0, a, > 0.

b) The Hurwitz matrix for n = 2 has the form

H = .
a, 4,

Because the Hurwitz minor H, 1 =a; >0, it is obvious that for the characteristic
polynomial of the second degree the Stodola condition for the existence and
nonnegativity of the coefficients ap >0, a; > 0 and a, > 0 is a necessary and a sufficient
condition for the (asymptotic) stability of the control system.
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Example 5.2

For the control system in Fig. 5.17 on the basis of the Hurwitz stability criterion it
IS necessary to mark out the stable region in an adjustable controller parameter plane
(KP,T|), (kl >0,T;> O)

v

lv (s)

W (s) 1 U(s) K Y(s)
—> Kp (1 + —] —>®—> s(l'lsl+ )

G: () Gp(S)

T,s

Fig. 5.17 Block diagram of the control system — Example 5.2

Solution:

In accordance with Fig. 5.17 the open-loop control system transfer function is
given by the relation

Kek(T;s+1) _ M, (s)
T’ (Ts+1)  N,(s)

The characteristic polynomial of the control system has the form

G (8) =G (5)Gp (8) =

N(s) = Ny () + M, (s) =T, T;8> + T,8% + Kok T, s + Kk, .
a)  From the Stodola necessary condition it follows:
K, >0, T, >0.
b)  The Hurwitz matrix for n = 3 has the form
T, Kok © 0
H=|TT KekT, | 0
0 T Keky
It is enough to verify the positivity of the Hurwitz minor
T, Kok

=K kT -T)>0 =T >T,.
T|T1 ka1T| P™ I(TI 1) | 1

2:‘

The stable region in the adjustable controller parameter plane (Kp,T,) determines
the last inequality T, > T; and the condition Kp > 0. The equality Kp = 0 determines the
nonoscillating stability boundary and the oscillating stability boundary is given by the
equality T, = T, (Fig. 5.18).
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A

TI
Nonoscillating
stability boundary — Stable region
Tl
Oscillating
stability boundary
0 K,

Fig. 5.18 Stable region for control system in Fig. 5.17 — Example 5.2

Example 5.3

For the control system in Fig. 5.17 (Example 5.2) on the basis of the Mikhailov
stability criterion it is necessary to mark out the stable region in an adjustable controller
parameter plane (Kp,T)), (ks >0, T1 > 0).

Solution:
The characteristic polynomial N(s) was already determined in Example 5.2

N(s)=T,T,s> +T,5% + Kpk,T,5 + Kk, .

and therefore the Mikhailov function has the form
N(jow) = N(s)|szjw =T, T,(j0)* +T,(jo)* + Kok T, jo+ Kk, =

= Np (@) + iNg (@),

N, (@) = Kok, - T, 0%,
Ng (@) =T, (Kpk, ~T,0%) .

In accordance with the analytical formulation of the Mikhailov stability criterion
(5.62) we can write

T, (Kok, —T,0*)w=0 = @ =0, w, = K_lF_’kl,
1
Kok, ~T,0° =0 = @, = KTLkl
I

For the roots of the imaginary part No(w) and real part Np(w) of the Mikhailov
function the inequalities

Kok Kok
a)1:O<a):/P1<a):/P1,
2 -I-I 3 -I-l

must hold. From these inequalities there is obtained
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\/kal <\/KF’k1 =T >T,.
TI Tl

This inequality together with the Stodola necessary condition of the nonnegativity
of the coefficients of the characteristic polynomial N(s), i.e. Kp >0 and T, >0 give us
the same stable region as in Example 5.2 (Fig. 5.18).

Example 5.4

On the basis of the Nyquist stability criterion for the control system with the time
delay in Fig. 5.19 it is necessary to determine the integral time T, which ensures the
(asymptotic) stability (k; > 0).

V(s) lvl(S)
W(s) 1 U(s) Y (s)
— T,_s - ke >
Gc(s) Gp (s)
Fig. 5.19 Block diagram of the control system — Example 5.4
Solution:

In accordance with Fig. 5.19 the open-loop control system transfer function has
the form

GO (S) = GC (S)GP (S) = %e_TdS )

The open-loop control system contains one integrating element (the controller),
and therefore it can be considered as stable.

The frequency open-loop control system transfer function is given by the relation

. . —dea)+£
6,1 =Gu(s),_,, - e gt o)

s=lo T jo T, 0 T,®
— A)(a)) ej(po(w)’
where

Ab(w):le—;, <o0<w)=—[wa+g}_

For rewriting the above relation the property
-z

%:—j:e 2

was used.
In order for the stability of the control system it must hold [see (5.69) and (5.65)]
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k
A(w,) <l = ——<1 a)p:i,
@p — 2T,

T 2K,

Po(@,)=-1 = —| Tyo, + 1> v

For
T - 2k, T,
T

the oscillating stability boundary is obtained, for which relation wp = wq = . holds
(Fig. 5.20).

TI
Nonoscillating Stable region
stability boundary
1 -5 ;
Oscillating
stability boundary
0 % ki Ty

Fig. 5.20 Stable region for the control system in Fig. 5.19 — Example 5.4

Example 5.5
The two transfer functions are given

G (5)= Y1) o
Y TUG) s+l
and
Y(s) s-1
U@s) s-1

It is necessary to analyze the ideal and the real reduction (cancellation) of the
binomials in these transfer functions.

Gy(8)=——

Solution:

In control theory we usually use the word cancellation or compensation instead
of the word reduction.

In the case of the transfer function G(s) the stable pole s, =—1cancels the stable

zero sf =—1 (the roots of the numerator = zeros, the roots of the denominator = poles).
In the case of the transfer function G(s) the unstable pole s, =1cancels the unstable

zero s) =1.
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a) The ideal cancellation

G (S)—ﬂ—s_-i_l_
UUG) s+l

1,
hy(t) = L'l{éel(s)} - L{%} () =1.

In the case of the ideal cancellation the same terms are reduced in the denominator
and numerator, and therefore the step responses h;(t) and h,(t) are identical.

b) The real cancellation (& — small number)

Y(s) s+(+e& S 1+g
Gy ()= YO s+
U (s) s+1 s+1 s+1’

1)1 2 1 1) 1+e | _
ht=L {gGl(s)}_L {s+1}+L {s(s+1)}

e+ (1+e)l-e)=1+e-g ™.

fim hy(t) =1+¢.

G(S)_Y(S)_S—(l-i-é‘)_ s l+¢
27 UGs) s-1 s—1 s-1'

4[1 Coaf 1] af 1ve |
h,(t) =L {gez(s)}_l_ {S_l} L {S(S_l)}

—e' +(l+s)1-e)=1+¢—e',

fimh, (6] = o=

For the real cancellation of the stable binomials the step response is slightly
different from the step response for the ideal cancellation. The difference depends on
the size and sign of the small number ¢. In contrast, in the case of the real cancellation
of the unstable binomials the step response is always unstable.

The unstable terms in the transfer functions must not be cancelled. The
uncontrollable and unobservable modes arise for the cancellation of the unstable terms
and it causes instability.
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6 CLOSED-LOOP CONTROL SYNTHESIS

6.1 Control performance

The simplest way to a control performance assessment is on the basis of the step
responses caused by input variables. In Chapter 5 it was said that by ensuring the
suitable control system properties considering the desired variable w(t), then the suitable
properties generally will be ensured for the disturbance variables v(t) and vi(t) too. For
the 1DOF conventional controller and disturbance vi(t) which is applied to the plant
output, that always holds.

Two exemplary control system step responses (Servo responses, set-point
responses) are shown in Fig. 6.1.
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Fig. 6.1 Control system step responses with marked control performance indices

From a practical point of view, the most important performance indices are the
relative overshoot x and the settling time t; (Fig. 6.1). The relative overshoot is
defined by the relation

Ym — Y()
- , =vy(t. ), 6.1
=) Ym = Y(tn) (6.1)
where yn, is the maximum value of the controlled variable (the first peak), t, — the time
of reaching the value yn, (the peak time), y(eo) — the steady-state value of the controlled
variable.
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The settling time ts is given by the time, when the controlled variable y(t) gets in
the band with width 2A, i.e. y(e0) + A, where the control tolerance is given

A=6Yy(»), 6=0.01+0.05 (1 + 5) %. (6.2)
The relative control tolerance 6 has most frequently the value 0.05 or 0.02.

For the settling time t; the value of the relative control tolerance ¢ must be always
given. If it is not specified, then it is assumed that 6 = 0.05 (5%).

The case « = 0 corresponds to a nonoscillatory control process, which is required
for processes where overshoot may cause undesirable effects (they are mainly thermal
and chemical processes, but also the movements of assembly robots and manipulators,
etc.).

For a nonoscillatory control process a minimum of the settling time ts is often
required. Such a control process is called the marginal nonoscillatory control process.

For x > 0 the control process is oscillatory and it is faster than the nonoscillatory
one. The rate of increase of the controlled variable y(t) can be measured using the rise
time t,. It is the time at which the controlled variable y(t) reaches the steady-state value
y(e0). Most often the rise time t; is defined as the time required for the response to go
from 0.1 y(x) to 0.9 y(). In this way the defined index of the rate of increase
controlled variable y(t) is applicable to both oscillatory and nonoscillatory control
processes and even for processes with time delay.

The control process with the relative overshoot x about 0.05 (5%) is acceptable
for most plants and processes. If the minimum of the settling time ts is at the same time
ensured, then such control process is often regarded as “practically optimal”. It is
widely used wherever small overshoot does not matter or is desirable, e.g. for pointer
type measuring and recording instruments (in this case the small overshoot enables a
faster interpolation of a pointer position).

Since the plant is always continuous, therefore, the control process performance is
frequently assessed for the continuous (analog) control system.

The integral criteria are very suitable for a complex evaluation of the control
process performance.

It is obvious that if the given integral criterion will be smaller, then the control
performance will be higher. In order to not operate with the two variables y(t) and w(t),
it is suitable to operate only with the control error e(t) = w(t) — y(t) and it is assumed that
e() = 0. If e(0) #0, then in all relations for the integral criteria the term e(t) — e(w)
must be substitute in lieu e(t).

Integral of error
le = [e(t)dt. (6.3a)
0

The integral of error I, (IE = integral of error) is the simplest integral criterion.

It is not suitable for oscillatory processes, because I = 0 for the control process
on the oscillating stability boundary. Its best advantage is that it can be easily computed
(see Appendix A)
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l,e =limE(s) =Iim0fe(t)e’5tdt=ofe(t)dt. (6.3b)
s—0 s—>O0 0

Integral of absolute error

o0

Iae = [le(®)]dt. (6.3c)
0

The criterion of the absolute error lag (IAE = integral of absolute error) removes
the disadvantages of the previous integral criterion I, and therefore it is applicable to
both the nonoscillatory and the oscillatory control processes. However, it has a very
unpleasant behaviour consisting in the fact that in the points where e(t) changes sign the
derivative is not defined. Therefore the value of this criterion cannot be calculated

analytically but only numerically or by simulations.

Integral of squared error

e = [€2(B)dt. (6.3d)
0

The criterion of the squared error lise (ISE = integral of squared error) removes
the disadvantages of the two previous integral criteria I ;g and l,ag, because it is also
applicable for the oscillatory control process and its value can be determined
analytically [the course e?(t) is smooth], but the resulting control process is too
oscillating. Its use is appropriate in those cases, when the desired variable w(t) or the
disturbance variable v(t) have a random character.

ITAE criterion
Iiae = [tle(®)|dt. (6.3¢)
0

The ITAE integral criterion lirae (ITAE = integral of time multiplied by absolute
error) contains the time and the control error, and therefore it simultaneously minimizes
both the error and the settling time t;. It is a very popular integral criterion, although in
the case of oscillatory courses its value can be determined only numerically or by
simulation.

The most important integral criteria were briefly described. The values of the
controller adjustable parameters can be determined by their minimization, which is
often done by simulation.

The steady-state errors are the important control performance index. These
errors can be caused by the input standard testing signals, which have the forms: the
step input, the ramp input (it is the integral of the step input) and the parabolic input (it
is the integral of the ramp input).

The overall control error is given by (5.10)
E(s)=E.(5)+E,(5)+E,(9),
where
Ew(8) =Gy (SIW(S), E,(8)=Ce(S)V(5), E, (5) =G, e(SN(S),

are partial control errors caused by the corresponding input variables.
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Because the equality
Gye ()= _lee (s),

holds [see (5.11) and (5.13)] it is worth considering only the control errors caused by
the desired variable w(t) and the disturbance variable v(t) in the plant input.

The standard testing signals are:
the step input

WD) =Wyn(®) 2W(s) =72, V(D) =vgn(t) 2V (9) =2, (6.4)
the ramp input

w(t) = wtn(®) 2W(S) =2, V() =wtn() 2V (s)= 35, (65)
the parabolic input

W) = W0 2W(S) = T2, V(O =S 2V (9= 3. (6.6)

On the basis of the final value theorem it is possible to compute the steady-state
control errors

e,(<) = lime, (1) = iMSE, (5), e,(o<) = lime, (t) = MSE, (5). (6.7)

From the frequency control system transfer function (5.17) the modulus
(magnitude) or logarithmic modulus can be obtained

Ay (@) =modG,, (io) =[G,y (j@)| or L, () =20log A, (). (6.8)

The typical course of the control system magnitude response Ayy(w) is shown in
Fig. 6.2. From Fig. 6.2 some of the control performance indices can be obtained:
AWy(a)R) — the peak resonance (the resonant magnitude), w_ — the resonant angular

frequency, , —the cut-off angular frequency.
For the well-tuned control system it is recommended that the relations
Ay (@g) <11+15 or L, (wg)<(0.8+3.5) dB. (6.9)
would hold [2, 4, 9, 10, 22, 29].

A too high value of the peak resonance gives a high oscillation and significant
overshoots.

The cut-off angular frequency w, determines the width of the control system
operating bandwidth, i.e. the range of operating angular frequencies. The higher value
enables the control system to better process higher angular frequencies. Its value is
given Dby a decrease of the modulus Ay(w) [Lw(w)] on the value

% A, (0)=0.707A,, (0) [Lwy(0)—3dB] and for the big peak resonance Ayy(wg) by an

increase the modulus Awy(w) [Lw(w)] on the value \/EA,W(O)il.414AW(O)
[L,, (0)+3dB].
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From the magnitude response Awy(w) the control system type g can be determined,
because the relations hold

Ay (=1 or L, (0)=0 = q=1, (6.10)
A, (0) <1 or L, (0)<0 = g=0. (6.11)
Ayyy(@),
Awy(a)R)

A,(0)

1
ﬁAwy(O)

v

0
Fig. 6.2 Control system magnitude response
The control system type g can be determined on the basis of the frequency

response of the open-loop control system (the Nyquist plot) Go(jw) for @ — 0, see. Figs
5.15 and 5.16.

The gain crossover angular frequency wgy and the phase crossover angular
frequency w, are given by the relations [see (5.64) and (5.65)]

Ay(@,) =1 (6.12)

Pol@y)=-1 , (6.13)
where

A, (@) =mod G, (jo) =[G, (jo) (6.14)

is the modulus of the frequency response of the open-loop control system and
9, (w) =argG, (jo) (6.15)
is the phase of the frequency response of the open-loop control system.
For the oscillating stability boundary the equalities hold [see (5.67)]
(6.16)

Oy = Wy = Wy,

where . is the ultimate angular frequency.

From the Nyquist plot very important control performance indices can be
determined, like the gain margin ma and the phase margin y (see Figs 5.15 and 5.16).
For common control systems the following values are recommended
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m,=2+5 or m_=20logm, =(6+14) dB, (6.17)
T

=30°+60° | —+—|. 6.18

y (6 ?J (6.18)

The bold values should not be in any case exceeded [2, 4, 9, 10, 13, 22, 24, 29].

Vi(s)
wW(s) E() U (s) Y (s)
Ge(s) | Gp(s) - ——

Fig. 6.3 Block diagram of the control system

The frequency transfer functions Gyy(jw) and G, ,(jw) [see Fig. 6.3 and relations

(5.3), (5.5)] have for the automatic control theory essential importance and therefore
they are also written by special symbols T(jw) and S(jw) and they have special names.
From equation (5.5) it follows

Gy (o) +G,,(jw)=1 & T(w)+S(w)=1. (6.19)
The function S(jw) is called the sensitivity function and the function T(jew) the
complementary sensitivity function.

The name of the sensitivity function S(jw) follows from the following
considerations (Fig. 6.3).

From the relation

Y (@) =Gy, (oW (o) = 1?&0(?2,?8082))\’"““’) (6.20)

for W(jw) = constant we get
dY(jo) dG,, (o)
Y(o) ~ G, o)

i.e. the relative change of the controlled variable (its transform) is equal to the relative

change of the control system properties (its transfer function). Similarly, from (6.20) the
relationship is derived

4G, (@) _ L {decawmep(jw)}
G (@) 1+Gc(i@)Gp(i@)| Gclie) ~ GplGe) |

(6.21)

or

dY () _ 4Gy (o) _ S(jw){decaw) . dGPGw)} (6.22)
V(o) Gy (o) Go@)  Gplio) |

which expresses the influence of the relative changes in the properties of the controller
(its transfer function) and the plant (its transfer function) on the relative change of the
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control system properties (its transfer function), and thus on the relative change of the
controlled variable (its transform). From relation (6.22) it is clear that this influence
expresses just the sensitivity function S(jw). For its lower value the lower influence of
the relative changes of the controller and the plant properties will be on the relative
change of the control system properties, and hence the relative change of the controlled
variable.

The sensitivity function S(jw) therefore expresses the sensitivity of the control
system to very small mostly unspecified changes of the control system elements.

A typical course of the sensitivity function modulus |S(ja>)| =mod S(jw) is shown
in Fig. 6.4. The scale of the angular frequency w is usually logarithmic.

The maximum value of the sensitivity function modulus

1|

M. = max |S(jw)| = max 6.23
S O§w<oo| (J )| 0<w<wo|] + GC(Ja))GP(Ja))‘ ( )
has a very important interpretation.
‘S(]a))| A
MS __________________
1
0 @ "

Fig. 6.4 Course of sensitivity function modulus

The inverted value of the maximum of the sensitivity function modulus 1/Ms is
exactly the shortest distance of the Nyquist plot G,(jw) to the critical point (-1 + j0), see
Fig. 6.5.

The value Ms for a well-tuned control system should not be greater than 2 and it
ought be in the range [2, 13, 22, 29]

14<Mg <2, (6.24)

The maximum of the sensitivity function modulus Ms can be used to estimate the
gain and the phase margin, because the inequalities hold
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m, > , (6.25)

y >2arcsin 2& : (6.26)

S

Fig. 6.5 Geometrical interpretation of the maximum of sensitivity function modulus Ms

The maximum of the sensitivity function modulus Ms is a complex control
performance index, because from the relations (6.25) and (6.26) it follows that for
Ms < 2 the gain margin ma > 2 and the phase margin y > 29 will be ensured. Similarly
for Ms < 1.4 the inequalities ma > 3.5 and y > 42° hold. The opposite statement is not
valid, i.e. the values ma and y do not guarantee the corresponding value Ms [2, 13].

Another great advantage of the maximum of the sensitivity function modulus Ms
Is that it can be used to express the slopes of the sector nonlinearity (Fig 6.6)

_ Mg Sf(ul)S Ms -5, (6.27)
Mg+1 u  Mg-1

in which the control system with nonlinearity (Fig. 6.7) is asymptotically stable [2, 13].

Nonlinearities or a time-varying gain often appears in real control systems. These
cases can be described by the sector nonlinearity

u, = (), £(0)=0,

which crosses through the origin and it is defined by the lines of the slopes a and B (Fig.
6.6)

0<aulsf(u1)swl:»0<as$sﬁ. (6.28)

1
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A U; = ﬂul

U
up = f (u)
Uy = QU
123

Fig. 6.6 Nonlinearity in sector («, f)

The actuator is nonlinear in the majority of cases, see Fig. 6.7a. For the purpose of

stability verifying the block diagram in Fig. 6.7a can be modified in the block diagram
in Fig. 6.7b.

a)

v

G2 (S)

\4
-

o

b)

Gz (S)

v

\4

%’ Gu(s)

Fig. 6.7 Control system with segment nonlinearity: a) original, b) modified

The stability of the control system with the sector nonlinearity may be verified on
the basis of the circle stability criterion: “The control system with the nonlinearity in

the sector (o, f) is asymptotically stable if the frequency response (the polar plot) of the
stable linear part with the transfer function

G(5) = G,(5)G, (5) (6.29)

passes on the right side of the circle which crosses through the points —i, 1 and
(24

which has the centre on the negative half-axis (Fig. 6.8) [13].
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G(jw)
Fig. 6.8 Geometrical interpretation of circle stability criterion

It is obvious that for a=/£>0 and G,(s) =aG(s) the circle stability criterion
converts into the Nyquist stability criterion for the stable open-loop control systems.

For instance on the basis of (6.27) for Ms = 2 the slopes o = 0.67 and S = 2 of the
sector nonlinearity can be obtained, similarly for Ms = 1.4 the slopes o = 0.58 and =
3.5 can be obtained.

With the sensitivity or the insensitivity of the control system to very small
changes in the properties of its elements there is a very close relation to the robustness
of the control system, which is its ability to hold the control objective for the larger,
mostly quantitatively defined, changes of the properties mostly of the plant (or other
control system elements) and for some decrease of the control performance, but always
ensuring its stability. For instance the maximum of the sensitivity function modulus Mg
determines the sector («, ) for the nonlinearity or time-varying gain that does not cause
loss of the stability, i.e. the Ms expresses in a certain way the robustness of the control
system for the sector nonlinearity or the time-varying gain in the sector (o, /).

6.2 Controller tuning

At present, there are a huge number of different controller tuning methods [1 — 11,
13 - 15, 17, 19 — 31]. Only some selected controller tuning methods will be described
here, which are based on closed-loop control system properties (Paragraphs 6.2.1 —
6.2.4) and on the knowledge of the plant mathematical model (Paragraphs 6.2.5 —
6.2.10).

6.2.1 Ziegler-Nichols closed-loop method

The ZN (Ziegler-Nichols) closed-loop method (the ZN ultimate parameter
method) comes from the real control system for shutting down the integral (T} — ) and
the derivative (Tp — 0) components and the oscillatory stability boundary caused by the
controller gain Kp [2, 4, 17, 22, 29, 31].

For the oscillating stability boundary the ultimate (critical) period T, and the
ultimate (critical) controller gain Kp are determined from any control system variable
(see Fig. 6.9) and from the controller. It is obvious that the ultimate gain Kp. is
determined iteratively.

The values of the adjustable parameters for the selected controller are calculated
on the basis of Tab. 6.1

For the P controller the gain margin ma = 2.
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Iy T
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0 T

Fig. 6.9 Determination of ultimate period T,

The destabilizing influence of the integral component in the PI controller is
expressed by decrease of K, in comparison with the P controller and the stabilizing
influence of the derivative component (with an appropriate filtration) in the standard
PID controller is expressed by increase of K, (compare with Tab. 6.4). The ratio

Ty /T, =1/4.

Tab. 6.1 Controller adjustable parameters for the Ziegler-Nichols closed-loop method
(ZN closed-loop method)

Controller Ks T To
p 0.5K . )
PI 0.45K To g3t -
12
PID 0.6K, 0.5, 0.125T,

The ZN closed-loop method is also applicable for the I controllers. In this case,
the control system is brought up on the oscillating stability boundary by decreasing the
integral time T,. When the oscillating stability boundary occurs then the ultimate
integral time T, is determined and for the tuning the value

T, =2T, (6.30)
is used.

Even in this case, the gain margin ma = 2.

We choose
T =(4-6)T, (6.31)

if the nonoscillatory control process is required. In this case the gain margin is
ma =4 -6 [22, 29].
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The ZN closed-loop method is particularly advantageous because it does not
assume any knowledge of the plant properties and it is operating with the real plant and
the controller. Its major disadvantage is that it must bring the control system to the
oscillating stability boundary, i.e. the control system must oscillate, which could cause
the plant damage or its nonlinear properties can arise.

Its other disadvantage is that it is too aggressive, which follows from the
requirement of the quarter-decay ratio, see Fig. 6.10. After controller tuning by the ZN
closed-loop method the real overshoot is from 10 % to 60 %, at an average for the
various plants around 25 %. The controller tuning by the ZN closed-loop method is
suitable for a stabilizing control in the case when disturbance variable v(t) influences the
plant input.

Procedure:
1. All connections of the control system and the functionality of all its elements must
be checked.

2. The desired variable (set-point) value w(t) is set and in the manual mode y(t) =
w(t) is set too, the integral component (T, — o) and the derivative component
(To — 0) are shut down, the controller gain Kp is decreased and the controller is
switched to the automatic mode.

3. The controller gain Kp is subsequently increased as for a small change of the
desired variable w(t) the stable oscillation arises which corresponds to the
oscillating stability boundary.

4.  From the periodic course of any control system variable the ultimate period T, and
from the P controller settings — the ultimate gain Kp. are determined.

5. For the chosen controller on the basis of Tab. 6.1 (Tab. 6.2 — Tyreus-Lyuben) the
values of the adjustable parameters are determined.

6.2.2 Tyreus-Lyuben method

The procedure for controller tuning by this method is the same as for the ZN
closed-loop method. The values of the adjustable parameters are determined on the
basis of Tab. 6.2 [2, 17, 22, 29]. From a comparison of the Tabs 6.1 and 6.2 it follows
that the TLM (Tyreus-Lyuben method) is very conservative.

Tab. 6.2 Controller adjustable parameters for the Tyreus-Lyuben method (LTM)

Controller Ks T To
Pl 0.31K 2.2T. _
T, .
PID 0.45K . 2.2T. 55 =0.16T,

6.2.3 Quarter-decay method

The QDM (quarter-decay method) is a modification of the ZN closed-loop
method. In contrast to it this method does not assume control system oscillation on the
stability boundary and therefore it operates in the linear region and it can be used for
more plants [22, 29].
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Tab. 6.3 Controller adjustable parameters for the quarter-decay method (QDM)

Procedure:

Controller Ks T To

P KP1/4 - B

Pl 0.9Kpy/4 Tya -
PID 1.2Kpy,, 0.6T,, 0.15T,,,

1. and 2. The same steps like for the ZN closed-loop method.

3. The controller gain Kp is subsequently increased until the step response y(t)
caused by the desired variable w(t) has such a course that the ratio of two
consecutive amplitudes is equal to 1/4, see Fig. 6.10.

4.  The time Ty is determined from the step response y(t) and the controller gain
Kp1/4 IS read from the P controller.

5. For the chosen controller on the basis of Tab. 6.3 the values of its adjustable
parameters are determined.

N b_B.1
i r\ a a A 4
| B | J Z)
})(m) // T ] :—"‘"--.__
o \L ¥ A’P 1/4
I T1f4
o T — i’

Fig. 6.10 Control system tuning by the quarter-decay method (QDM)

6.2.4 Good gain method

The GGM (good gain method) is similar to the ZN closed-loop method and is

described in [6, 29].

Procedure:

1. and 2. The same steps like for the ZN closed-loop method.

3. The controller gain Kp is subsequently increased until the step response y(t),
caused by the desired variable w(t), has the course with the overshoot and the
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observable undershoot (Fig. 6.11). This course corresponds to the controller gain
Kpgc. The step of the desired variable w(t) does not cause a nonlinear behaviour,
i.e. especially a saturation.

4.  The integral time is set to the value
T, =1.5T,, (6.32)
and the controller gain is set to the value
Kp =0.8Kpgg- (6.33)
The time T, is determined in accordance with Fig. 6.11.
5. Incase of using the derivative component the derivative time is set to the value
Ty =0.25T, . (6.34)

When the noise appears or the manipulated variable u(t) is too active, then the use
of the derivative component is not suitable and it must be shut down.

6.  The final desired course of the controlled variable y(t) is obtained by fine tuning
of the controller gain Kp, or the integral time constant T,.

A Ty

A

TOM

F

KPGG

y(t)

1 1 1 1 1 1 I
-

t

Fig. 6.11 Control system tuning by the good gain method (GGM)
A certain advantage of the GGM is that for the slightly oscillating course the first
undershoot can be determined better than the second overshoot.
The GGM is based on the following considerations [6].

It is assumed that the closed-loop control system has the properties that can be
expressed by the transfer function
1

. 6.35
T2s?+2£,T,s+1 (635

Gy (s)=

The relative damping &, = 0.6 causes the relative overshoot x =~ 0.1 (10 %) and the
small observable undershoot. The period of the damped oscillation is
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27T, _ 27T, _ o .

g o

The control system with the transfer function (6.35) will be on the oscillating
stability boundary for &, = 0 with the ultimate period

T, = 24T,

The relation between the time T,, of a damped oscillation for the GGM and the
ultimate period T, of the undamped oscillations is

T, =0.8Ty =1.6T,.
For the ZN closed-loop method the relation

fo T L6 g aor
1.2 1.2

holds (see Tab. 6.1).

Because the controller tuning by the ZN closed-loop method is too aggressive,
therefore the value

T, =15T,,
is chosen.

For the ZN closed-loop method the PI controller gain K is a 0.9 multiple of the

P controller gain K, . Since the integral component destabilizes the control system, the
controller gain Kpgg should therefore be decreased, i.e.

Kp =0.8Kpgg.

It is obvious that the above mentioned GGM is only applicable to plants which
can oscillate with the P controller in accordance with Fig. 6.11.

Example 6.1
For the plant with the transfer function
1.5
Gp(S) =
» (%) (45+1)°

it is necessary to tune suitable controllers by the (the time constant is in seconds):
a) ZN closed-loop method,
b) TLM,
c) QDM,
d) GGM.
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Solution:
a) The experimental ZN closed-loop method

h

F
y(@®)

vit)

1F
Fig. 6.12 Responses for the control system tuned by the ZN closed-loop method —
Example 6.1

After shutting down the integral and the derivative components the controller gain
Kp was subsequently increased until for a small change of the desired variable w(t) the
oscillating stability boundary was obtained. From the P controller the ultimate gain
Kpc = 5.3 was read and from the periodic course the ultimate period T, = 14.5 s was
obtained. On the basis of Tab. 6.1 the values of the adjustable parameters for chosen
controllers were calculated:

P: Ky =0.5K,, =2.65;
Pl: Ky =0.45K,, =2.39; T, =0.83T, =12.04s;
PID: K, =0.6K,, =3.18; T, =0.5T, =7.25s; T, =0.125T, =1.81s.

The responses y(t) for the control system with different controllers tuned by the
ZN closed-loop method are shown in Fig. 6.12.

b) The experimental TLM

For the ultimate parameters Kp. =5.3 and T, = 14.5 s obtained in the previous
point a) on the basis of Tab. 6.2 the values of the adjustable parameters for chosen
controllers were calculated:

Pl: Ky =0.31K,, =1.64; T, =2.2T, =31.9s;

PID: K, =0.45K,, =2.39; T, =2.2T, =31.9s; T, =0.16T, =2.32s.
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The responses y(t) for the control system with different controllers tuned by the
TLM are shown in Fig. 6.13.

A
V(o) PI

100 200 300 t[s]

v(t)

1k

Fig. 6.13 Responses for the control system tuned by TLM — Example 6.1

¢) The experimental QDM

After shutting down the integral and the derivative components the controller gain
Kep was subsequently increased until the step response y(t) caused by the desired
variable w(t) had the course with the ratio B/A = 1/4 (Fig. 6.10). From the P controller
the gain Kpy4 = 1.9 was read and from the step response y(t) the time Ty, = 20.5 s was
obtained. On the basis of Tab. 6.3 the values of the adjustable parameters for chosen
controllers were calculated:

P: Kp =Kpy, =1.9;
Pl: Ky =0.9Kp,,, =1.71; T, =T,,, = 20.5;
PID: K, =1.2K,,,, =2.28; T, =0.6T,,, =12.3s; T, =0.15T,,, =3.08s.

The responses y(t) for the control system with different controllers tuned by the
QDM are shown in Fig. 6.14.
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i
»(®)

100

v(t)

Sk

Fig. 6.14 Responses for the control system tuned by QDM — Example 6.1

d) The GGM

After shutting down the integral and the derivative components the controller gain
Kp was subsequently increased until the step response y(t) caused by the desired
variable w(t) had the course with the overshoot and the observable undershoot in
accordance with Fig. 6.11. From the P controller the gain Kpgs = 1.5 was read and from
the step response y(t) the time To, = 11.6 s was obtained. The values of the adjustable
parameters were determined on the basis of relations (6.32) — (6.34):

A

y) Pl w(t)
)! | /

%

i PID

100 200 300 i[s]

v(t)

Ak

Fig. 6.15 Responses for the control system tuned by GGM — Example 6.1
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Pl: K =0.8Kpge =1.2; T, =1.5T,, =17.65;
PID: K; =0.8Kpge =1.2; T, =1.5T,, =17.6s; T, =0.25T, =4.4s.

The responses y(t) for the control system with different controllers tuned by the
GGM are shown in Fig. 6.15.

Although on the basis of one plant the described experimental controller tuning
methods cannot be objectively assessed, it is clear that the ZN closed-loop method gives
an oscillating control process with large overshoots — the tuning is too aggressive. It
generally does not ensure the stability. The TLM is less aggressive than the ZN closed-
loop method. The great disadvantage of both methods is that they need to bring the
control system on the oscillating stability boundary, which is not allowed for most real
control systems. Due to great steady-state control errors the P controller is unusable in
this case.

The remaining experimental methods are very simple and they give in most cases
practically acceptable results.

6.2.5 Ziegler-Nichols open-loop method

The ZN open-loop method (the ZN step response method) is based on the
nonoscillatory step response of the proportional plant. From the plant step response the
(substitute) time delay T, the (substitute) time constant T, and the plant gain k; are
determined in accordance with Fig. 4.5a.

The values of the adjustable parameters for the selected controllers are given in
Tab. 6.4 [2, 22, 29, 31].

Similarly like for the ZN closed-loop method the destabilizing influence of the
integral component in the PI controller is expressed by a decrease of K, in comparison
with the P controller and the stabilizing influence of the derivative component (with an
appropriate filtration) in the standard PID controller is expressed by an increase of K,

(compare with Tab. 6.1). The ratio T, /T, = 1/4.
From Tabs 6.4 and 6.1 it follows that both ZN methods for the P controller ensure

the gain margin ma = 2, that means the double increase of the controller gain K, brings
the control system on the oscillating stability boundary.

Tab. 6.4 Controller adjustable parameters for the Ziegler-Nichols open-loop method
(ZN open-loop method)

* * *

Controller Ke T, Ty

P Lk - -

P| 0.9-1" 3.33T, _

PID 1.2 2T 0.5T
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The ZN open-loop method is generally more aggressive than the ZN closed-loop
method [2].

Procedure:
1.  From the plant step response the time delay T,, the time constant T, and the plant
gain k; are determined (see Section 4.2, Fig. 4.5a).

2. On the basis of Tab. 6.4 the values of the adjustable parameters for chosen
controllers are calculated.

Example 6.2
From the plant step response with the transfer function (see Example 6.1)
15
Gp(s) =
°(%) (4s+1)°

its parameters were obtained by the experimental identification: T, =3.2s, T, =14.8 s
and k; = 1.5.

It is necessary to tune the P, Pl and PID controllers by the ZN open-loop method.

Solution:
On the basis of Tab. 6.4 we can write:
P: K, = Ty =3.08;
leu

Pl: K, :0.9T—_’|‘_i2.78; T, =3.33T, =10.66 s;

1'u

v(t)

1k

Fig. 6.16 Responses for control system tuned by the ZN open-loop method — Example
6.2
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Tn

1'u

PID: K, =1.2—-=3,08; T, =2T,=6.4s; T, =0.5T, =1.6s.

The responses y(t) for the control system with different controllers tuned by the
ZN open-loop method are shown in Fig. 6.16. We can see that the ZN open-loop

method is really more aggressive than the ZN closed-loop method (compare with Fig.
6.12). The P controller is unusable in this case too.

6.2.6  ,,Universal“ experimental method

From the many existing experimental controller tuning methods the very simple
and in most practical cases effective method, here called the UEM ("universal”
experimental method) is given below. It was developed in the former USSR [4, 9]. It is
suitable for systems with transfer functions (Tabs 6.5 and 6.6)

k
Go(s)=—2L ¢S 6.36
p(S) Ts+1 (6.36)
and
Gp(s) = Lpe ) (6.37)
S

The UEM is quite similar to the Chien-Hrones-Reswick method [2].

The UEM enables conventional controller tuning both from the point of view of
the desired variable w(t) (servo problem) and the disturbance variable v(t) (regulatory
problem) which acts on the plant input for three control performance indices (criteria):
the fastest response without overshoot, the fastest response with relative overshoot x =
0.2 (20 %) and the minimum of the integral of the squared error (ISE). Here the control
process with the maximum relative overshoot from 0.02 (2 %) to 0.05 (5 %) is
considered as the fastest response without overshoot.

Procedure:

1.  The plant transfer function must be converted on one form (6.36) or (6.37) on the
basis of the methods described in Section 4.2.

2. According to the control performance requirements the suitable controller, the
kind of control process (without the overshoot, with the overshoot 20 %,
minimum of ISE) and the purpose (the servo or regulatory problem) are chosen
and then on the basis of Tab. 6.5 for the plant transfer function (6.36) or Tab. 6.6
for the plant transfer function (6.37) the values of the controller adjustable
parameters are computed.

Example 6.3
For the plant with transfer function (see Examples 6.1 and 6.2)
15
Gp(s)=
() (45 +1)°

it is necessary to tune the PI controller (the time constant is in seconds).
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Tab. 6.5 Controller adjustable parameters for the “universal” experimental method

(UEM)
k . Control process
Tlﬂe_ a® Fastest response without Fastest response with Minimum of
! overshoot overshoot 20 % ISE
Tuning from the point of view
Controller Desired Disturbance Desired Disturbance Disturbance
variable w variable v variable w variable v variable v
P Ko 03—L 03—L 0.7 1L 0.7 1 _
led led led led
Kp 0.3511 061 0611 0711 L
Pl KTy kT kT KT KTy
T | 1171, | 0.8T,+05T, T, T, +0.3T, T, +0.35T,
K 0.6L 0.95L 0.95L 1.2L 1.4L
led led led led led
PID- 1y T, 2.4T, 1.36T, 2T, 1.3T,
Tp 0.5T 0.4T, 0.64T, 0.4T, 0.5T,

Tab. 6.6 Controller adjustable parameters for the “universal” experimental method

(UEM)
K Control process
—Lg7Tus Fastest response without Fastest response with Minimum of
S overshoot overshoot 20 % ISE
Tuning from the point of view
Controller Desired Disturbance Desired Disturbance Disturbance
variable w variable v variable w variable v variable v
P K, 0371 0371 071 07—+ _
led led led led
Ke 0371 0.46—— 071 07—+ L
Pl KiTq kiTy KiTq kT4 KTy
T % 5.75T, 0 3T, 4.3T,
K, 0.65i 0.65i 1.1i 1.1i 1.36i
led led led led led
PID 1 gy o 5T, o oT, 16T,
Tp 0.4T, 0.23T, 0.53T, 0.37T, 0.5T,
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Solution:

The plant transfer function Gp(s) has not the desired form (6.36), and therefore in
accordance with the scheme (4.37) and Tab. 4.1 we can write (i=3, k=2, T3 =45,
Tyz =059):
L:1.980 = T,=198-4=7.92s;
3

T‘“T_J =1232 = T4, =1232-4+0=4.93s;
3
Gp (S) — 15 - ~ k]_ e—les — 15 e—4.93S )
(4s+1)° Ts+1 7.92s+1
The PI controller tuning from the point of view of the desired variable w(t) (Tab.
6.5):
a) without overshoot (0 %)
Ky =0.35 L .oa7; T, =1.17T, =9.27s;
1'd1
b) with overshoot 0.2 (20 %)
K, =0.6 Lt =0.64; T, =T,=7.92s;
1'd1

The PI controller tuning from the point of view of the disturbance variable v(t)
which acts on the plant input (Tab. 6.5):

a) without overshoot (0 %)

K, =0.6 Lt

=0.64; T, =0.8T, +0.5T, =7.90s;

1d1

b) with overshoot 0.2 (20 %)

x T,

K, =07 =0.75; T, =T,,+0.3T, =7.31s;

1'd1
¢) minimum of ISE

Ky = L

=1.07; T, =T, +0.35T,=7.70s.
ledl
The responses of the control system with the PI controller tuned by the UEM from
point of view of the desired variable w(t) are shown in Fig. 6.17a and from point of
view of the disturbance variable v(t) which acts on the plant input are shown in Fig.
6.17b.

From both figures it is evident that the UEM gives acceptable results even for a
very rough approximation of the plant transfer function.

Example 6.4

It is necessary to tune the PI controller by the UEM for the integrating plant with
the transfer function
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Fig. 6.17 Responses of the control system with the PI controller tuned by the UEM from

005 4

Ge(5)= s(s+1)

the point of view: a) desired variable w(t), b) disturbance variable v(t) — Example 6.3

The time constant and the time delay are in seconds.
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Solution:

The plant transfer function must be converted to the form (6.37). In accordance
with the relation (4.44) for Ty =1 s and T4; = 4 s we can write:

005 i 005 s,

Gp(s)=——e
o (8) s(s+1) s
The PI controller tuning from the point of view of the desired variable w(t) (Tab.
6.6):

a) without overshoot (0 %)

K, =o.37ii1.48; T =ow;

led

b) with overshoot 0.2 (20 %)

K, =o.7i=2.8; T =c0.

kl d

The PI controller tuning from the point of view of the disturbance variable v(t)
which acts on the plant input (Tab. 6.6):

a) without overshoot (0 %)
1

Kp=046—=184; T, =5.75T,=28.75s;
KTy
b) with overshoot 0.2 (20 %)
Ko :o.7i:2.8; T, =3T, =15s;
KTy

¢) minimum of ISE

K, =i=4, T, =4.3T, =215s.
led

The responses of the control system with the PI controller tuned by the UEM are
shown in Fig. 6.18. From Figure 6.18a it follows that regulatory responses are
unacceptable. It is caused by a shut down of the integral component (T,” =0 ) of the Pl
controller, which converts to the P regulator. Servo responses for integrating plants and
for a conventional controller with an integrating component always contain very big
overshoots which cannot be removed by any tuning [29, 30]. In our case see Fig. 6.18b.
The unacceptable overshoots can be supressed by the use of a suitable input filter or a
2DOF controller.
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wi(t)

100 t[s] 200

v(t)

b)

100 f[s] 200

v(t)

1k

Fig. 6.18 Responses of the control system with the PI controller tuned by the UEM from
the point of view: a) desired variable w(t), b) disturbance variable v(t) — Example 6.4

6.2.7 SIMC method

The SIMC method belongs among simple but effective controller tuning methods
[20]. It is based on the internal model control — IMC (internal model control), and
therefore its author suggests shortening the SIMC interpret as "Simple Control™ or
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"Skogestad IMC". Although the SIMC method is based on the IMC method for the
controller design uses the formula for the direct synthesis (e.g. see Fig. 6.3)

1 Gy(s)

Ge(s) = : (6.38)
T Gp(s)1-G,, (5)
where
G, (s)=Gp(s)e ' (6.39)
is the plant transfer function and
Gy (5)= L e (6.40)

is the desired control system transfer function and T, is the time constant of the closed-
loop control system.

After substitution (6.39) and (6.40) in (6.38) the controller transfer function
1 1

= GO T e e (641
iS obtained.
By the use of the approximation
e ~1-T,s (6.42)
the simplified controller transfer function
Ge(s) = (6.43)

Gp(s) (T, +Ty)s
is obtained.

The controller design procedure will be shown for the plant with the transfer
function

k

Go(s) = 1 et T>T,. 6.44
P( ) (T1$+1)(TZS+1) 1 2 ( )
It is obvious that
O P E—
(Mis+D(Ts+1)

and therefore after its substitution in (6.43) the controller transfer function
Go(s) = M+ DMs+D) K;{1+ 1
Ky(Tw +Tg)s

S

|

is obtained from which follows, that it is the PID; controller [the PID controller with
serial structure , see (5.27)], where

’ T]_

’ k (Tyy +Tg)

j(T[;s +1) (6.45)

) T|'=T1’ TE) :Tz- (6-46)
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Tab. 6.7 Controller adjustable parameters for the SIMC method [29]

Controller
Plant — — —
Type Kp(Kp) T (T To(T5)
1 k, e Te° | - 2Ky Ty -
kl —Ty4s Tl -
1 a7l min[T, 8T -
2 Tsil PI 2T, [T,.8T4]
3 PID Lit min[T,,8T,] T
' 2k, T, 1= 2
k1 e—Tds
4% (Tis+1)(T,s+1) Ti+Ty T, +T, T,
T >T 2k, T, T,+T,
Y PP T,(T, +8T,) 8T,T
+
5 v - d/ T, +8T _—2d
16k, T2 27 T, +8T,
Ky s 1
M 8T _
6 S ¢ Pl 2k Ty ‘
7 PID L 8T T
i d 2
kl —Tys 2led
8 *Tz9+Y PID To +814 T, +8T 8Ty
16k, T} 2 T, +8T,
9 PID L 8T 8T
K ' 16k, T2 d d
_1e—Tds
s? 1
16T 4T
10 PID 8k T2 d d

*The row 4 holds for T, <8T,, the row 5 for T, > 8T, . The adjustable parameters
Ky, T, and TS hold for the P1D; controller (with a serial structure).

By choice of the time constant T,, we can obtain the differently fast responses, but
simultaneously also the corresponding requirements on the control variable. It is
obvious that for the more aggressive tuning the response will be faster, but at the same
time greater demands will be on the control variable.

The time constant T,, is sometimes denoted as /4 and then we speak about the
A-tuning.

The tuning on the basis of relations (6.46) gives a very good and fast servo
response but in the case

T, >>T, (6.47)
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a very slow regulatory response. Therefore Skogestad modifies the integral time
T, =min[T,, 4T, +T,)]. (6.48)
Skogestad recommends the further modification
T,=T,. (6.49)
In this way row 3 in Tab. 6.7 was obtained.

The modifications (6.48) and (6.49) give a relatively fast regulatory response and
simultaneously ensure a good robustness of the tuning [20], see Tab. 6.8.

The cases in rows 1, 2, 3 (for T, <8T,) and 4 in Tab. 6.7 are the same as for the
desired model method for the relative overshoot x =~ 0.05 (5 %), see Paragraph 6.2.8.

Tab. 6.8 Basic control performance indices for the control system tuned by the SIMC
method in accordance with Tab. 6.7

Control performance Rows in Tab. 6.7

Indices 1,2,3 (for T,<8T,)and 4 6.7
Ms 1.59 1.70
Ma 3.14 2.96
me [dB] 9.94 9.43
y [deg] 61.4 46.9
y [rad] 1.07 0.82
Ay (@g) 1.00 1.30
@pTg 1.57 1.49
@4 Ty 0.50 051
AT, 1T, 2.14 1.59

For T, < 4(T,+T,) or T, <8T, the SIMC method is the compensation method

because the numerator of the controller transfer function cancels the corresponding term
in the denominator of the plant transfer function.

The basic control performance indices for the SIMC method (Tab. 6.7) are in Tab.
6.8 [20].

For rows 2, 3 (for T,>8T,) and 5 inTab. 6.7 the values of the control

performance indices lie between the values in the left and right columns whereas the
right column is the limit case.

In the last row in Tab. 6.8 the relative delay margin is

Ay _ 7

=, 6.50
T4 a)gTd ( )
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It expresses the relative time delay change which causes a loss of control system
stability [13].

The values of the control performance indices in Tab. 6.8 are in the recommended
limits [see relations (6.9), (6.17), (6.18) and (6.24)] and show a good robustness of the
control system tuned by the SIMC method (Tab. 6.7).

The last two rows in the Tab. 6.7 are related to the integrating systems of the
second order with a time delay for which a conventional controller tuning is a very
difficult problem, because in this case the type of the control system is q = 3.

Procedure:

1.  The plant transfer function is converted on the basis of any methods from Section
4.2 to a suitable form in accordance with Tab. 6.7. The form of the plant transfer
function simultaneously determines the recommended controller.

2.  For the recommended controller the values of its adjustable parameters are
computed on the basis of Tab. 6.7.

Example 6.5
For the plant with the transfer function

e (5)= a1

6s+1)4s+1)2s+1) °

it is necessary to tune the Pl and PID controllers by the SIMC method (the time
constants and the time delay are in seconds).

Solution:

In accordance with the “half rule” we can write (T1p=6S, Tog=4S, T3o=25,
Tgo=35, kl = 1)

a) The transfer function (4.29) [see (4.54)]

T. T.

1 -3s 1 —7s
Gp(s)= ~———e s,
#(o) (6s+1)(4s+1)(25+1)e 8s+1

Since T, <8T, on the basis of the row 2 in Tab. 6.7 there is obtained
Kp=057; T, =8s.
b) The transfer function (4.35) [see (4.55)]

T,=T,=6s T, =T20+T—;°:55, T, =Td0+T—;°=4s;

1 —3s 1 —4s
G = ~— )
o(s) (6s+1)4s+1)2s +1)e 65+ (B +1)

Since T, < 8T, on the basis of the row 4 in Tab. 6.7 there is obtained

K,=138, T, =11s; T, =273s.
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The responses of the control system tuned by the SIMC method are shown in Fig.
6.19. It is evident that the SIMC method gives for very rough approximations of the

plant transfer function results which can be successfully used in practice.

N PID
"o / r'i
’ \

1+

wit)

I
T
)
[
I
!
]
1
i
I
]
]
]
1
I

f[s] 200

100

v(t)

1L
Fig. 6.19 Responses of the control system tuned by the SIMC method — Example 6.5

6.2.8 Desired model method
The DMM (desired model method), formerly also known as inverse dynamics
method, was developed at the Faculty of Mechanical Engineering, Technical University

of Ostrava [22, 29]. This method is very simple.
The DMM uses the formula for the direct synthesis (6.38)
(6.51)

1 G,(s)
C®=50 1—gwy(s) ’

(6.52)

where

Gp(s)=Gp(s)e ™
is the plant transfer function and
(6.53)

is the desired control system transfer function and k, is the open-loop gain.

The simple open-loop transfer function
(6.54)

G0 (S) = GC (S)GP (S) = k_so e*TdS

corresponds to the desired control system transfer function (6.53).
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After substitution (6.52) and (6.53) in (6.51) the transfer function of the designed
controller

Ge () = %(S) (6.55)

is obtained.

It is obvious that the same transfer function (6.55) will be obtained for (6.52) on
the basis of the open-loop transfer function (6.54).

In order for the conventional controller transfer function to be obtained on the
basis of the formula (6.55) the plant transfer function must have one of the forms in
Tab. 6.9. If it is necessary to use a concrete controller then the plant transfer function
must be converted to a corresponding form.

It is very important that the plant transfer functions in Tab. 6.9 in the part Gy (s)

have not any unstable zeros and poles, and therefore the use of the formula (6.51) or
(6.55) is fully correct.

For instance for a plant with transfer function

kl —TdS
GP(S):(rls+1)(rZs+1)e JERE (6.56)
for [see (6.52)]
Gy(5) = =
(Ms+D(T,s+1)

after substitution in (6.55), the transfer function of the PID; controller gets

K, (T,;s+D)(T,s+1 , (T/s+1)(Tis+1
o) oSN D)y, [ DTgsrd)
1 |

where

K;: — koTl

k ) T|’*=T11 T|5*=T2- (657)
1

After using the conversion relations (5.29) the transfer function (5.26) of the
conventional PID controller with adjustable parameters there will be obtained

KPZKO(T1+T2), T|*:T1+T2, TI;: T1T2

—< 6.58
K, T,+T, ( )

Similarly in this simple way we can get relations for the adjustable parameters of
conventional controllers for all remaining rows in Tab. 6.9.

There remains to determine the appropriate open-loop gain k,. The desired control
system transfer function (6.53) in the form of the anisochronous mathematical model
[32] has the advantage not only in its relative simplicity, but also in the fact that by
changing the open-loop gain k, different servo responses can be easily achieved, i.e. a
different control performance can be obtained, see Fig. 6.20.

The open-loop gain k, for the critical nonoscillatory control process and for the
oscillatory control process on the oscillating stability boundary can be easily determined
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analytically assuming that the non-dominant poles and zeros of the control system have
a negligible influence on its behaviour [22, 29].

From the characteristic quasipolynomial of the control system [see the
denominator of the desired control system transfer function (6.53)]

N(s) =se"*+k, (6.59)

the double real dominant pole s, and the corresponding open-loop gain k, can be
determined from the equations

1
N = S, =——,
d N (S) O N SerS+k0 — 0 - 2 -I-d (6 60)
aNG) Tys+1=0] | __1 '
ds ° eT,
d

»(®) ‘_

wit)

Fig. 6.20 Influence of the open-loop gain k, on servo step responses

The open-loop gain k, for the oscillating stability boundary (i.e. the ultimate open-
loop gain) can be obtained for s,, =+ jw, from the characteristic equation

se*+k, =0 (6.61)
as a main solution, i.e.

VA

tjm, e 4k, =0 = @, =——, Kk, =——. 6.62
J C (0] C 2-|-d (0] 2-I-d ( )

For solving the complex equation (6.61) the Euler formula
e* = cosx + jsin x (6.63)

was used.

From both relations (6.60) and (6.62) which express the open-loop gain ko, the
conclusion may be made, that it can be written in the form

1
© ATy

where f is the coefficient depending on the relative overshoot x [see Fig. 6.20 and
relation (6.1)]

k (6.64)
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k=0= f=¢,

k=1= ,Bzg.
T

(6.65)

In order to determine the dependence of the coefficient 5 on the relative overshoot
K, 1t IS necessary to compare the two dominant poles of the control system with transfer
function (6.53) (see Fig. 6.21)

S, =—wcCotgp+ jo (6.66)

with the corresponding pair of the poles of the control system with the transfer function
(see Fig. 6.21)

2
@, -T,s

G, (s)= W g 7, 6.67

Wy() SZ+2§Wa)WS+a)v2V ( )

where &, and w,, is the relative damping and the natural angular frequency of the control
system.

Im A @
SZ ——————— b
N\
Lp
* >
gwa)w . @ 0 Re
|
S
Sl K - - e - ¢ — (D

Fig. 6.21 Position of the dominant poles of a control system in complex plane s

After substitution of (6.66) in (6.61) and modification the complex equation
—wCotgp + jo+k, e Tt @090 — 0 (6.68)
IS obtained.

The complex equation (6.68) after considering the Euler formula (6.63) can be
expressed in the form of two real equations

—wcotgp +k, e” 9 cos wT, =0,

(6.69)
K, "™ sin T, =0,

the main solution is
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0-L
’ na (6.70)
k,=—20 ¢ 92,
Tysing

Tab. 6.9 Controller adjustable parameters for the desired model method (DMM)

Controller
Plant transfer function Ke (Kp) o o
Type INUD. T (T5)
T, =0 T, >0
K 1< 1 1
1 Le7le P _ _
S lew klﬂTd
k1 -T,s Tl Tl
1 a7l _
2 TS+l Pl kT kAT, T
kl _T S 1 l
— =+ @ d _
3 s(Ts+1) PD KT, kAT, T
4 k PID L L T T.
1 e—TdS i lew klﬂTd 1 2
(T,s +1)(T,s +1)
T,+T, T,+T, T.T,
5 T, >T. PID e e T, +T
1= kT k BTy e T +T,
kl e 25T 25T T
2.2
6 | Tos?+25Ts+1 PID Z50%0 500 25T >
T | kAT, | | 2
05< & <1

The adjustable parameters K/, T,” and Tg* hold for the PID; controller (with a serial
structure).
The coefficient £ is given by formula [see (6.64)]

. K
ﬂ: Smgpetgf/? ) (671)
@
For instance it is obvious that for
1

=0 f=e=>k =—
® s 0= T,

and

Vd 2 T
=== f=—=k, =—,
¢ 2 p V4 ° 2T,

the same results like (6.60) and (6.62) were obtained.
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Since the angle ¢ (Fig. 6.21) for the control system with the transfer function
(6.67) is given by the relative damping &, i.e.

@ =arccos &, (6.72)

therefore the desired servo step response can be obtained by the suitable choice of the
relative damping &,.

,rll
1}() =0
T
| KC/
I o
O ’];, t o t'

Fig. 6.22 Servo step responses of the control system

In practice the use of the relative overshoot « is preferable instead of the relative
damping &y (Fig. 6.22). The relative overshoot x can be determined from the step
response obtained from the transfer function (6.67)

y(t) = {1—%50%)% sin[(t ~T,)o+arcsin 2}};@ -T,),  (6.73a)
2 =1-¢2, (6.73b)
,

where #(t) is the unit Heaviside step.

The maximum overshoot appears in time ty,, when the derivative of the step
response (6.73) with respect time t (i.e. the impulse response)

2
dt W
will be for t > Ty for the first time equal to zero, i.e.
t =2 4T, (6.75)
w

After substitution (6.75) in (6.73) there is obtained

%
y(t)=l+x=1+e & =
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Ty

= k=g O = (6.76)
|

o g = insd 6.77)

Nzl +Ink

On the basis of the relations (6.77), (6.72), (6.71) and (6.64) the open-loop gain k,
and coefficient S can be determined for the given (desired) relative overshoot «.

For the relative overshoot in the range 0 <x < 0.5 (050 %) the corresponding
values &y, ¢ [rad] and S were computed, see Tab. 6.10.

Tab. 6.10 Values of coefficients " and g for given relative overshoot «

x| O 005 | 010 | 015 | 020 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50
Sl 1 0.690 | 0.591 | 0.517 | 0.456 | 0.404 | 0.358 | 0.317 | 0.280 | 0.246 | 0.215
® 0 0.809 | 0.938 | 1.028 | 1.097 | 1.155 | 1.205 | 1.248 | 1.287 | 1.322 | 1.354
£’ 2718 | 1.935 | 1.710 | 1.549 | 1.423 | 1.319 | 1.230 | 1.153 | 1.086 | 1.026 | 0.972
£ 2718 | 1.944 | 1.720 | 1.561 | 1.437 | 1.337 | 1.248 | 1.172 | 1.104 | 1.045 | 0.992

In Tab. 6.10 the values of $ calculated on the basis of the relations (6.77), (6.72),
(6.71) and (6.64) are marked as f’, because they were obtained analytically by
comparing the two poles of the control system (6.67) with the two dominant poles of the
control system (6.53) neglecting its non-dominant poles [22, 29]. The experimentally
corrected values are marked as f. The differences between the values of g obtained
analytically and the values of f corrected experimentally are not greater than 2 % and
for the relative overshoot in the range 0 <« < 0.2 (0-20 %) are even less than 1 %.

For computation of the coefficient 5 the formula
L(x) =2.718 —0.4547 733 (6.78)

can be used, where « is the relative overshoot in percentages [1].

The basic control performance indices were determined for the control system
with conventional controllers tuned by the DMM, see Tab. 6.11.

From Tab. 6.11 it follows that for 0 < x < 0.2 (0-20 %) the tuning by the DMM
satisfies all the recommended values of the most important control performance indices,
see (6.9) (6.17) (6.18) and (6.24), so the MPM for « < 0.2 (20 %) guarantees a good
control system robustness.

From a comparison of Tabs 6.9 — 6.11 for x = 0.05 (5 %) with Tabs 6.7 and 6.8, it
is clear that the DMM for the proportional plants is equivalent to the SIMC method for
T, <8T4 and T, =Tg; the DMM exactly uses f=1.944 and the SIMC method uses
p = 2. For this reason, they are almost identical values of the basic control performance
indices, compare Tab. 6.8 (the left column) with Tab. 6.11 for x = 0.05.

The essential difference between these two methods lies in the choice of the
desired control system transfer function. The SIMC method assumes that the desired
control system transfer function for T,, = T4 has the form [see (6.40)]
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Tab. 6.11 Basic control performance indices for the control system tuned by the desired
model method (DMM)

K 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4
Ms 1.394 | 1.615 | 1.737 | 1.859 | 1.987 | 2.123 | 2.282 | 2.458 | 2.665
Ma 4.27 305 [ 270 | 245 | 2.26 | 2.10 | 1.96 1.84 1.73

m [dB] 12.609 | 9.686 | 8.627 | 7.783 | 7.082 | 6.444 | 5.845 | 5.296 | 4.761

y [deg] 68.9 605 [ 56.7 | 53.3 | 50.1 [ 471 | 441 | 411 | 38.1

y[rad] 1.20 1.06 [ 099 | 093 | 0.88 | 0.82 | 0.77 | 0.72 | 0.67
Auwy(wr) 1 1.002 | 1.056 | 1.142 | 1.247 | 1.367 | 1.512 | 1.678 | 1.876
Lvi'é(é)]R) 0 0.017 | 0.473 | 1.153 | 1.917 | 2.715 | 3.591 | 4.496 | 5.465
T
T —=1.57
wqTd 0.37 051 [ 058 | 0.64 | 070 | 0.75 [ 0.80 | 0.85 | 0.91

ATylTy 3.27 2.05 1.70 1.45 1.26 1.10 | 0.96 0.84 | 0.73

1 -T4S
G, (s)= g ¢
w (5) T,s+1

and the DMM for (6.64) has the form [see (6.53)]

Gy (5) I S

It is obvious that the SIMC method in its basic form, i.e. for T; <8Tq and Ty, = Ty
can never ensure the properties of the control system expressed by the control system
transfer function (6.40). In contrast, the DMM ensures the properties of the control
system given by the transfer function (6.53) not only for the value of f=1.944 (= 2),
but also for other values of g in Tab. 6.10 with a high accuracy.

Tab. 6.9 can be extended for the ideal proportional plant with time delay

Gp(s) =ke ™ (6.79)
with recommended | controller
1
G~ (8)=— 6.80
c(s) Ts (6.80)
for
T, =k/AT,. (6.81)

The DMM can be used for systems without a time delay, i.e. Tq = 0, but in this
case, the desired control system transfer function is supposed in the simple form
[compare with (6.53)]

1
T,S+1’

Gy (5) = (6.82)

where T,, is the time constant of the closed-loop control system. The recommended
controller transfer function can be obtained after substitution (6.82) in (6.51)
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1

G.(8)=———. 6.83
c(8) G (9T (6.83)
For instance for the plant with the transfer function
k
Gp(s) = 1 , T, >T 6.84
P( ) (T1$+l)(T23+l) 1 2 ( )
on the basis of the relation (6.83) the transfer function of the PID; controller
G (5) = (Ms+D(Ts+1) _ K. (T,s+1),(I'Ds +1)
k.T,S T/s
is obtained, where
* T * *
K’ :_1, T, :T1 T' :T 1 (685)
P leW | 1 D 2

or after use of the relation (5.29) the transfer function of the conventional PID
controller is obtained [see (5.26)] with the adjustable parameters
« T +T, TT,

Kp = kT T '
1w 1+ T,

, T =T 4T, T = (6.86)

The time constant T,, should be chosen with regard to the limitation of the
manipulated variable u(t) [the smaller T, = the greater demands on the manipulated

variable u(t)] and the required settling time ts. For instance, for the given relative control
tolerance ¢ it holds [see Fig. 6.1]

0=0.0505%) = t,~3T,,

(6.87)
5=0.02 (2%) = t, ~A4T,.

Example 6.6
For the plant with the transfer function
2
GP (S) = 2
(6s+1)(4s+1)(2s+1)

it is necessary to tune the Pl and PID controllers by the DMM so that the relative
overshoot will be about 10 % (time constants are in seconds).

Solution:

The plant transfer function does not correspond to the forms in Tab. 6.9, and
therefore it is necessary to modify them so that they will be suitable for the Pl and PID
controllers, i.e. they must by converted to the forms in rows 2 and 4 (5) in Tab. 6.9.

In accordance with the ‘“half rule” we can write: k1 =2, T1g=65S, Too=4S5,
T30 = T40 =2s.

The transfer function (4.29) [see (4.54)]:

T1=T10+T—§°=83, Ty =T—§°+T30+T4O=65,
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2 ~ 2 e—6$
(6s+1)(4s+1)(2s+1)? 8s+1

On the basis of Tab. 6.9 (row 2) and Tab. 6.10 for k; =2, T;=8s, T4 =6 s and
k=0.1= f=1.720 we can write
* Tl

Ky = =0.39; T, =T, =8s.
Ky STy

The transfer function (4.35) [see (4.55)]:

Gp(s) =

T. T.

2 2 —3s
(65 +1)(ds+1)(25+1)°  (6s+1)(Bs+1).

On the basis of Tab. 6.9 (row 5) and Tab. 6.10 fork; =2, Ty =65, T, =55, Tqg =3
sand x = 0.1 = £ = 1.720 we can write
Ko =t Te g 070 7727 4T, =115, T =12
kAT, 1+ T,

Gp(s)=

=2.73s.

The control system responses are shown in Fig. 6.23. It is obvious that even for
the rough approximation of the plant transfer function the obtained responses reflect
both the good applicability of the DMM and the “half rule”.

7@ 4
PID

.....

1 .
160 £[s]

v(t)

1k

Fig. 6.23 Responses of the control system tuned by DMM — Example 6.6

Example 6.7

It is necessary to tune the PID controller by the DMM for the plant with the
transfer function
2 —6s

Gp(s)=— =&
(55 +1)(3s +1)
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so as to the relative overshoot was « = 0; 0.1 and 0.2 (time constants and time delay are
in seconds).

Solution:
The plant transfer function has a suitable form for the PID controller (see Tab.
6.9, row 5) and therefore for ky =2, Ty =55, T, =3, Ty =6 s on the basis of Tabs 6.9
and 6.10 we can directly write:
k=0 = B=2718 = K, =111 T2 - g 05,
kST

k=01= B=1720 = K;=0.39;
k=02 = p=1437 = K, =046;

T =T,+T,=8s, T, :TTiTZT =1.88s.
1 2

The responses of the control system are shown in Fig. 6.24. We can see that the
resulting courses are very accurate.

y(E) & k=02 K=0.2

wit) . / k=01

()

1L

Fig. 6.24 Responses of the control system with the PID controller tuned by DMM —
Example 6.7

6.2.9 Modulus optimum method

The MOM (modulus optimum method) belongs among analytical controller
tuning methods. It is based on the requirement for the modulus of the frequency control
system transfer function [7, 21, 22, 27, 29]

Gy (8) >1=G, (jo) >1= A, (0) > 1.

It is assumed that the desired course of Ayy(w) should be a monotonically
decreasing function in accordance with Fig. 6.25.
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Auo) |

A,,(0)=1

Fig. 6.25 Desired course of the modulus of frequency control system transfer function
for the modulus optimum method

It is obvious that it holds

Ay (@) 51 AL (o) > 1.

This is important because with the square power it is easier to work and the
equalities

(a+ jo)(a—jw) =a? + @? :|a+ ja)|2
hold and therefore for the control system transfer function

_byps™ by, s" .+ bys + Dy

G n n-1 !
ans +an_1s +...+als+a0

wy n>m (6.88)

it is possible to write

2m 2(m-1) 2
B,o"" +B, 0 +...+Bw” + B,

2 (0)=G,, (jo)G,, (~jw) = , (6.89
A (@) =Gy (J0)Gyy (Z] ) A o™ +A 0* "D+ + Ao’ + A (6.89)
where
A, =aZ B, =h¢,
A =a/ —2a,a, B, =b? —2byb,
A, =a; —2aa, +2a,3, B, =bZ —2bb, +2b,b,
U o (6.90)
A=q +2jz=1(_1)1aifjai+j B =D, +2jz:1(_1)Jbifjbi+j ,
A= ar?—l - 2an—2an Bn1= bnzw—l - 2bmfzbm '
An = ar% Bm = bn21 .
If the equalities
B_B_B_  _B_
A A A A
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hold and the numerator degree m would be equal to the denominator degree n of the
control system transfer function (6.88), then the square of modulus A,Zw(a)) and hence

modulus Awy(w) would be independent of the angular frequency . From the point of
view of the physical realizability the inequality n > m always holds in technical practice
and therefore independency on the angular frequency w cannot be achieved. The control

process will be satisfactory if Af,y(a)) with increasing angular frequency o it will

monotonically decrease, i.e.
B0 Bi
Ay (0)=—2>—1, (6.91)
A A
When using the MOM the conditions (6.91) are practically used like equalities in
the same number as there is in the number of adjustable controller parameters p, i.e.

AB,=AB, i=12...p. (6.92)
For the control systems of the type q = 1 (b, =a, < B, = A,) the equalities
A =B, i=12....p. (6.93)
are used.

Since condition (6.92) or (6.93) does not consider all the coefficients of the
characteristic polynomial

N(s)=a,s"+a,,s" " +...+aS+a, (6.94)

in the denominator of the control system transfer function (6.88), the MOM generally
does not guarantee the stability and therefore it must not ensure the desired control
process performance. When using the MOM it is generally necessary to check stability
and to verify the control process performance.

If the plant transfer function Gp(s) has any of the forms mentioned in Tab. 6.12,
then using the recommended controller and corresponding values of its adjustable
parameters (T = 0), the control system transfer function will have the so called standard
form

1 1
G, (s)= , - T =2T, 6.95
u (5) T2s2+2&,T,5+1 Su V2 v ' (6.99)

where for rows 1 and 2 in Tab. 6.12i=1, forrows 3 and 4 i =2 and forrow 5i=3.

In this case it is not necessary to check the stability of the control system, because
the form (6.95) is also the standard form for the ITAE criterion [see (6.3e)]. This
standard form leads to the relative overshoot 4.3 %.

The compensation of the time constants, i.e. the cancellation of one or two stable
binomials for PD and PI or PID controllers, was used for controller tuning on the basis
of Tab. 6.12. It causes a simplification of control system dynamics but simultaneously it
may lead to slower responses because the stable zeros of the numerator of the transfer
function Gy, (s) can accelerate the control process [22, 29].

Table 6.12 may be used as well for the analog controllers (T = 0) as for the digital
controllers (T > 0), see Section 6.3 [27].
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The MOM is used for g < 1, primarily for electrical drives control, where small

time constants (electrical) are substituted by the summary time constant, see Section

4.2.

Tab. 6.12 Controller adjustable parameters for the modulus optimum method (MOM)

Controller < analog ¥ i 8
Plant transfer function digital
5 | - 2k, (T, —0.5T) _
Tls +1 1\ .
ke - 1
s(Tys +1) 2k, - -
K, )
(T;s+1)T,5+1) Pl T, T 05T i
2k, T,
T,2>T,
kl
1
s(T,s+1)T,s +1) I T ) )
l 2 i 2k, (T, +0.5T) T,-0.5T
T,2>T,
ky ]
(Ms+Ts+Ts+) |[pp | — T T T
2K, (T, +0.5T) b T,+T, 4
T,>T,>T,

Procedure:

1.

The plant transfer function is converted into a suitable form in accordance with
Tab. 6.12 and for the recommended controller the values of its adjustable
parameters are calculated.

If the plant transfer function cannot be converted into some of the forms in Tab.
6.12 or another controller instead of the recommended controller is used, then for
the determination of the p adjustable parameters of the selected controller for
q=0 formulas (6.92) are used and for q=1 formulas (6.93) are used. It is
possible to use time constant compensation (cancellation).

In the case of another form of the control system transfer function than the
standard form (6.95) for the MOM, it is necessary to check the stability (if the
control system is unstable, the MOM cannot be used) and the control performance
should be preferably verified by simulation.
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Example 6.8

It is necessary to tune the PI controller by the MOM for the plant with the transfer
function

y
Ts+D(Ts+D)

with the use of compensation.

Gp(s)=

T, 2T,

Solution:
For the PI controller with the transfer function

1 Ko (T,s+1)
G.(s) =K1+ — |=—P 1=~
PRAREAR.
the open-loop control system transfer function has the form
Kpk, (Tys+1)
T,s(Ts+1)(T,s+1)

from which it follows that the control system type q = 1.

Go(8) = Gc(8)Gp (8) =

For T, =T, the compensation (cancellation) of the stable binomials Tys + 1 takes
place and the open-loop transfer function is essentially simplified
GO (S) = Lkl .
T,s(T,s+1)
The control system transfer function has the form
G,(s) _ Kpky
1+G,(s) TT,8” +Ts+Kpk;

Gy ()=

where dg = bo = kal, a1 =Tq,a =TT,
On the basis of the relations (6.90) and (6.93) for p = 1 there is obtained
A =af —2a5a, =T — 2K kTT,,
B, =0,

A=0=T7-2KkTT,=0= K, = Lt

2k,T,"

The adjustable parameters for the PI controller are
* Tl *

- T =T..
P2k, o

The same adjustable parameters were directly obtained from Tab. 6.12 (row 3 for
T=0).

After substitution these parameters in the control system transfer function there is
obtained

1 1
CoTASP42T,s+1 TRSP 425 T 5+1

Gy (8)
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where

It is obvious that the standard form of the control system transfer function for the
MOM was obtained [see (6.95)] and therefore a stability check is unnecessary.

7(E) 4

wit)

40 80 120 160 sl

v(t)

A1

Fig. 6.26 Response of the control system with the PI controller tuned by the MOM —
Example 6.8

For instance for k; =3, Ty =6 sand T, = 4 s there is obtained

K T

= =025 T, =T, =6s.
P2k, P

The response of the control system is shown in Fig. 6.26.

6.2.10 Symmetrical optimum method

The SOM (symmetrical optimum method) is suitable for controller tuning for the
control system type g > 2, and especially in the case when disturbances act on the plant
input [2, 7, 21, 29]. In this paragraph q = 2 is assumed. Then the control system transfer
function with the PI controller for the SOM has the standard form

4T;s+1 B 4Ts+1
8T3s® +8T%s? +4Ts+1 (2T,s+1)(4T.%s%? +2T,s+1)

Gy (5) = (6.96)

where i =1 and 2, see the corresponding row in Tab. 6.13.

To calculate the controller adjustable parameters it is necessary to solve the
system of two equations [see (6.90)]

A =0 } :af—2a0a2=0,

6.97
A =0 a; —2aa, =0. (©.87)
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For instance for the plant with the transfer function

Go(s) =t (6.98)

s(T,s+1)
it is necessary to choice the PI controller (so as g = 2) with the transfer function
G:(s)=K 1+i (6.99)
¢ TS '

From the open-loop transfer function the closed-loop control system transfer
function

Ge (5)Gp () = w
T,s°(T;s+1)
is obtained
Gl (5) = G,(s) k KpT,s+k Kp (6.100)

1+G,(s) TT,s*+T, s> +kKpT;s+kKp
From (6.100) it follows that g = 2 (the last two coefficients in the numerator and
the denominator are the same).

For ap = kiKp, a1 = kiKpT}, @, = T, and a3 = T,T, after substitution in (6.97) the
adjustable parameters are obtained (see row 1 in Tab. 6.13 for T = 0)

. 1
kKT, )% =2k, KT, =0 K. = ,
(21 2 i P }:» P2k T, (6.101)
T| —2k1KPT1T| =0 Tl*:4T1.

It is obvious that after substitution (6.101) in (6.100) for i = 1 the standard form
(6.96) for the SOM is obtained.

Similarly, for the T; >> T, row 2 in Tab. 6.13 for T = 0 is obtained because it can
be written

k k
T 1kl ) : ~ e ) (6.102)
1

Since the stable zero is in the numerator of the control system transfer function
(6.96) and moreover g = 2, in the control system a relatively large overshoot of about 43
% arises. The large overshoot may be substantially reduced to about 8% by using the
input filter (see Fig. 5.5)

1
ATis+1°

G (5) = (6.103)

which in the case of using the 2DOF PI controller can be easily realized by selecting the
set-point weight value for the proportional component b = 0, see equation (5.36) for
T, = 4T; and Tp=0.

Table 6.13 may be used as well for the analog controllers (T = 0) as for the digital
controllers (T > 0), see Section 6.3 [29].
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Tab. 6.13 PI controller adjustable parameters for the symmetrical optimum method

(SOM)
analog T=0
P1 controller < o
Plant transfer function digital T >0
Ko T Filter
1 _ S 4T, -0.5T 1
s(T,;s+1) k, (8T, +3T) e 4Ts+1
kl 4T 1
Ts+1)(T,s+1 — 4T, —0.5T
2 (s +1)(Ts+1) k,(8T, +3T) 2=03 4T,5+1
T,>>T,

The SOM, similarly as the MOM, is mainly used in electric drives, where instead
of the input filter or the 2DOF PI controller the speed limiter on the input is often used
[7, 21].

For instance the transfer function of the DC motor from Example 3.6 can be easily
modified in the form (6.98) because motor armature circuit inductance is often
negligible, i.e. Ly = 0 (see also Section 4.2).

The same form (6.98) has also the simplified linearized model of the hydraulic
double acting linear motor, see Example 4.1.

Procedure:
1.  The plant transfer function is converted into a suitable form in accordance with
Tab. 6.13, e.g. by the approaches described in Section 4.2.

2. Based on Tab. 6.13 the values of the PI controller adjustable parameters are
determined and when the 2DOF PI controller is used then b = 0 is set.

Example 6.9
It is necessary to tune the PI controller by the SOM for the plant with the transfer
function (time constants are in seconds)
0.05

Gs(8)= s(10s+1)(2s+1)

Solution:

The plant transfer function does not have a suitable form for the SOM (see Tab.
6.13), and therefore it has to be modified. For k; =0.05; T10 =10 and Ty =2 on the
basis of the equality of complementary areas over the plant step responses (see Section
4.2) there is obtained

T, =Ty+T,=12 =

0.05 0.05

o) = S0s (25 +D) " s@2s1D)
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From Tab. 6.13 for k; =0.05 and T, =12 (T = 0) the PI controller adjustable
parameters were obtained

Ky =— - =084; T =4T, = 48s.
2k, T,

The servo and regulatory responses for different values of the set-point weight b
are shown in Fig. 6.27. For b = 1 the 2DOF PI controller is the conventional (LDOF) PI
controller. It is clear that by using of the 2DOF PI controller the overshoot in the servo
response was significantly reduced.

® b=1 conventional PI
V() A

wit)

fs]

V()

Fig. 6.27 Responses of the control system with the 2DOF PI controller tuned by the
SOM for different values of weight b — Example 6.9

6.3 Digital control

With the development of digital technology and at the same time with decreasing
prices digital controllers are increasingly being used in the control engineering. Digital
controllers mostly implement the same control algorithms like analog ones but in
discrete forms. Due to the assumed negligibly small quantization errors the terms
“digital” (discrete in time and magnitude) and “discrete” (discrete in time but
continuous in magnitude) are not distinguished. For instance the digital PID controller
(T is the sampling period, KT — the discrete time)

u(kT) = Kp{e(kT) T ﬁe(iT) o

D {e(kT) —e[(k —1)T]}} , (6.104)
T, iz T
k=012,...,
corresponds to the analog PID controller.

It is obvious that for the digital controllers further adjustable parameter arises —
the sampling period T. Its proper choice is very important from the point of view of the
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control performance. The sampling period T increases the influence of the integral
(summation) component (the integral component destabilizes the control process) and
reduces the effect of the derivative (difference) component (the derivative component
stabilizes the control process), hence the impact of the sampling period T on the
control performance is always negative. This follows also from the fact that between
the sampling instants kT <t < (k + 1)T the digital controller has no information on the
instantaneous value of the control error e(t), see Fig. 6.28.

e(kT)

K

»

ol T 2 | g

Fig. 6.28 Control error course in a control system with a digital controller

v(t) v,(t)
w(kT) e(kT)  u(kT) u, (t>l i y()
DC —| D/A —>®—> P ——>
y(kT)
A/D |«

Fig. 6.29 Control system with a digital controller

The analog-to-digital converter (A/D converter) processes the conversion of the
continuous (analog) variable into the discrete (digital) variable. It is plugged in the
feedback (Fig. 6.29). The output variable of the digital controller (DC) is the discrete
manipulated variable u(kT) which the digital-to-analog converter (D/A converter)
converts into the continuous in time (analog) variable ur(t), and has the most staircase
course (Fig. 6.30).

The digital PID controller is one of the most complex conventional digital
controllers. In practice simpler controllers are used:

- the digital PI controller

u(kT) = K{e(kT) +Tl§e(iT)}, (6.105)

| i=0

- the digital PD controller

u(kT) = Kp{e(kT) +TT—D {e(kT) —e[(k —1)T]}}, (6.106)
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Fig. 6.30 Manipulated variable courses in a control system with a digital controller

- the digital I controller
k
u(KT) = 3 e(iT), (6.107)
T| i=0
- the digital P controller
u(kT) = Kpe(kT). (6.108)

In practice, digital control algorithms with the summation (integral) component
are implemented in incremental forms [unlike the position forms (6.104) - (6.108)],
namely:

- the digital PID controller
U(kT) =ul(k —DT]+aee(kT) + qpef[(k —D)T]+ q,e(k — 2)T],
T T T T (6.109)
Oo = KP(]-”LfJFTD} G :_KP[]-JFZ?D} 9, =Kp ?Da
- the digital PI controller

u(kT) = ul(k =)T]+qee(kT) + aue[(k ~D)T],

T (6.110)
Qo = KP(]-JFT_]' 0, =—Kp,

- the digital I controller
u(kT) =u[(k =1)T] +_|_le(kT) . (6.111)
|

Summation (integral) and difference (derivative) components are often also
implemented by other methods (the forward rectangular method, trapezoidal method,
etc.) and in the summation index i starts from 1 and not from 0.
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For properly choosing sampling period T these differences are negligible and also
manufacturers often do not give any information about summation and difference
component implementation.

For the difference component the input variable must always be properly
filtered [18, 22, 29].

The digital controllers, similarly like the analog controllers, may also be
constructed with two degrees of freedom.

When using a conventional digital controller in comparison with the same type of
conventional analog controller, there is always a reduction of the control process
performance. It is given by the fact that between two sampling instants the digital
controller has no information on the real value of the control error e(t), and in addition
as mentioned above by increasing the sampling period T leads to destabilization of the
control system.

Therefore it is obvious that the choice of the sampling period and the problems of
the digital control are very complicated. Simplified digital controller tuning is shown
below which for the ordinary control practice is fully satisfactory.

If the A/D converter is moved from the feedback in front of the digital controller
(Fig. 6.31 above) then the digital controller with both converters can be approximately
regarded as the analog controller (AC). Therefore, for the approximate control system
synthesis with a digital controller there can be used the block diagram of the control
system in Fig. 6.31 (below).

Assuming that the D/A converter has the properties of the sampler and zero-order
holder the manipulated variable ur(t) has the form of the staircase time function, see
Fig. 6.30.

From Fig. 6.30 it follows that the staircase manipulated variable ur(t) for
sufficiently small sampling period T can be approximately expressed as u(t-—T/2).
Therefore, the control system with the digital controller can be substituted by a
continuous control system with the analog controller G¢(s) and the plant with the
transfer function

T, o L _[Td+1js
Gp(s)=Gp(s)e 2 =Gp(s)e” “*e 2 =G (s)e 2/, (6.112)
where Gy (S) is the part of the plant transfer function without the time delay.

Then for this plant the appropriate analog controller G¢(s) is designed and tuned.
The values of its adjustable parameters, together with the sampling period T are then
applied to the corresponding digital controller.

Some tuning methods are directly derived for digital controllers.
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v(t) vy ()
w(t) e(t) e(kT) u(kT) Uy () y(t)
A/D » DC » D/A P — >
AC
v V (s) Vi(s)
W (s) E(s) U (s) Y (s)

—.?—. Ge(s) | — GI(s) —>

Fig. 6.31 Conversion of a control system with a digital controller on a control system
with an analog controller

In this text, it relates to the MOM and SOM (Tabs 6.12 and 6.13), which are
determined for plants without a time delay. Therefore, these methods can be directly
used for digital controller tuning. For other methods considering plants with a time
delay the approximate procedure above for conventional digital controller tuning can be
used. If for the controller tuning methods mentioned in this text the inequality [29]

T<0.3T, and T <0.3T, (6.113)

hold then it can be assumed that the deterioration of the control performance in
comparison with the corresponding analog control will not be greater than about 15 %
[integral criterion IAE (6.3¢)].

By the time constant Ty in the inequality (6.113) the greatest plant time constant
IS to be considered.

Example 6.10
For the plant with the transfer function
1
Ge(S) =
(6s+1)(4s+1)

it is necessary to tune the analog and digital controllers so that the relative overshoot
will be about 5 % (time constants are in seconds).

Solution:

Since the MOM and DMM ( also the SIMC method for this plant) are able to
ensure a relative overshoot of about 5 %, both methods will therefore be used.

Modulus optimum method (MOM)

The plant transfer function has the desired form for the MOM (Tab. 6.12, k; = 1,
T1 =6, T, = 4), and therefore we can write directly:

a) The analog PI controller (T = 0)
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Ky =
2k, T,
b) The digital PI controller
In accordance with the inequalities (6.113) we can choose e.g. T=15s:
K: = T,-0.5T
2k,T,

=0.75, T, =T, =6s.

=0.69; T, =T, —0.5T =55s.

The responses of the control system tuned by the MOM are shown in Fig. 6.32.

a)
y(E) 4
1 [
fffff analog
= digital
O 1 1 1 »
40 80 120 t[s]
vt
1k
b)
u(l) &
DMM
1
i MOM
1L —
,,,,, analog
digital
0 1 1 1 »
40 80 120 t[s]

Fig. 6.32 Control system with an analog and digital P1 controller — Example 6.10:
a) controlled variable responses, b) manipulated variable courses
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Desired model method (DMM)

The plant transfer function has not the desired form for the DMM (Tab. 6.9),
therefore we must modify it (for the “half rule”: ky =1, T19 =6, Too = 4).

In accordance with (4.54) we can write
T. T.
T,=T+-2=8s, Ty=-2=2s,
1 10 2 dl 2

! ~ ! e,
(6s+1)(4s+1) 8s+1
We use Tabs 6.9 and 6.10 for the DMM (k; =1, T; =8, T4 = 2):
a) The analog PI controller (T = 0)
k=0.05 = £=1944,

Ky = LA =2.06; T, =T, =8s,
kAT,

b) The digital PI controller

We use the same sampling period T=1s in order to compare the MOM and
DMM:

Gp(s)=

* T,
Ko =—1T

The responses are shown in Fig. 6.32a. There are also shown the corresponding
manipulated variable courses (Fig. 6.32Db).

=165, T, =T, =8s.

The responses in Fig. 6.32a show that the DMM gives the faster responses with a
slightly higher overshoot although a rather rough approximation of the plant transfer
function was used. The overshoot for the DMM can be easily reduced by reducing the
controller gain Kp. The obtained courses in Fig. 3.32 also show that simplified digital
controller tuning gives acceptable results for control practice.

6.4 Cascade control

Simple control systems with conventional controllers (i.e. control systems with a
simple single-loop structure) may not always ensure the desired control performance. In
this case, it is possible to use controllers with a more complex structure or alternatively
the control systems may have a more complex structure.

In the first case, design, tuning, and especially the later maintenance in
operational conditions are very demanding from the point of view of craftsmanship as
well as the financial costs. The second case of using a more complex structure of the
control system is often inexpensive and feasible and it can achieve a substantial increase
in the control performance. Such control systems are characterized by a more complex
structure but they have only one main desired variable w(t) and one main controlled
variable y(t).
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The importance of the control system with a complex structure is currently great,
because the availability of high-quality measuring and computing devices easily allows
implementing these complex structures in industrial practice.

Below we will be devoted to only so called cascade control systems.

Since the conclusions cover both continuous control systems with analog
controllers and discrete control systems with digital controllers the arguments in transfer
functions and variable transforms will be omitted.

A Dblock diagram of the cascade control system is shown in Fig. 6.33. From the
block diagram it follows that the cascade control system consists of an auxiliary (slave)
control system (the inner loop) and a main (master) control system (the outer loop). The
controlled variable y; and the desired variable w; are called the auxiliary variables.

Fig. 6.33 Cascade control system

In accordance with Fig. 6.33 for the auxiliary control system there can be written
GeiGpy 1 Gp,

- G, =——PL _ =(1-G,,, )Gpy, (6.114
W Yy 1+Gc1GP1 1 +1 V1Y 1+Gc1Gp1 ( W1V1) P1 ( )

GClGPl
then for the main control system it is possible to write
_ GCZGPZGW1y1
" 1+Gc,GpoGy,y,
_ (1_ Gwlyl)GPlGPZ
1
G, = :

, (6.115)

WY1

If the auxiliary control system will be properly tuned, then for the sufficiently
large modulus of the open inner loop the relations hold

GeiGpy| >0 = Gy, —>1 (6.116)
and the transfer functions of the main control system can be simplified
~ GchPz_, G,.~0,G S (6.117)

V1Y

" 14 G, Gy, " 714 Ge,Gp, |
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Then the desired control performance will be ensured by properly tuning the main
control system (the outer loop).

From the above it is obvious that the cascade control system can be used in the
case when the plant can be divided into two parts with the transfer functions Gp; and
Gp; (i.e. the auxiliary variable y; can be measured at a suitable position). Its essential
feature is that it (partially) eliminates the internal loop including the disturbances acting
in this loop as well as its potential nonlinearities. The inner loop should not contain time
delays and the auxiliary controller G¢i should be as simple as possible, i.e. the auxiliary
controller Ge; is the P controller in the most cases. The main controller G¢, should
include the integration component (term), and therefore it is most often the Pl or PID
controller.

Cascade control systems are used for controlling electrical drives and power
servomechanisms. In this case, they may have more than two loops [7, 21, 22]. They are
very often used for the control of boilers, destillation columns and reactors and other
thermal power plants.

Procedure:

1. Primarily, the inner loop is tuned (i.e. the auxiliary control system) for the first
part of the plant. The P controller is most often used (steady-state errors do not
matter).

2. Then the inner loop is replaced by the simplest dynamic subsystem with the
transfer function Gyays (in case of possibility Guiy1 = 1).

3. Finally, the outer loop (i.e. the main control system) is tuned using the Pl or PID
controller and preferably the achieved control performance is verified by the
simulation.

Example 6.11
For the plant with the transfer function

Gp(s) = —k g oS = ﬁ —k2 e T
s(T;s+1) s T,s+1

it is necessary to design such control which ensures the control process without
overshoots and steady-state errors for the step change of all input variables.

Solution:

Since the integrator output variable can be measured, the plant can be described
by two serially connected transfer functions

k k
Go(S) =2, G, (s)=—2 ¢S
Pl( ) s PZ( ) T18+l

and then the cascade control in accordance with Fig. 6.34 can be used.
We use the P controller in the inner loop
Gey(8) =Kpy

and the PI controller in the outer loop

157



VITECEK, A., VITECKOVA, M. Closed-Loop Control of Mechatronic Systems

1
G, (8) =Kp,| 1+ —|.
c2(S) PZ( T SJ

12

For the auxiliary control system (the inner loop) it is possible to write

_ Gei(S)Gpy(s) 1
Glel ()= 1+ G (8)Gpy(S) -1 s+l 1
Gy (=) G (5)]Gu(s).

1+Ggy(S)Gpy () B

It is obvious, that the inner loop can be neglected theoretically for Kp; — oo,
practically, if its time constant is much smaller than the time constant Ty, i.e.

L 1 = 6,951 G, (50
P1™

Then the main control system (the outer loop) can be considered as a simple one-
loop control system, where Gyuy1(s) = 1 (Fig. 6.35). In this case, the main PI controller
may be tuned only for the second part of the plant with the transfer function Gpy(s).

From the point of view of the requirements on the control performance the DMM
can be used for main PI controller tuning. On the basis of Tabs 6.9 and 6.10 (for
xk=0= £=2,718) it is possible to write

Kp = Lt T =T,
kZﬂTd
For instance, fork;=2,k, =1, T;=5s, Tg=5s, based on the DMM the adjustable

parameters of the both controllers were obtained: K., =5 (Kpik; = 2Ty), K, =0.368;
T, =5s.

The responses of the cascade control system are shown in Fig. 6.36. It is obvious
that the responses without overshoots can be obtained even for the integrating plants
and conventional controllers. In most cases cascade control ensures very good control

performance.
G

. V(s) gv<s) _______________ |
W (s) 1 L(s) | K, / K, oot 1 Y(s)
—»(2)—» KP{1+TIZSJ Kpy 5 > Ts+1 >

Gey(s) U |

Ge,(s)
Gpy(5) G, (s)

Fig. 6.34 Cascade control system — Example 6.11
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—> (l_ Gwly1 )GPl

%—»K 141 G, (5) B . T X
P2 T|23 WY1 Tls+1

Fig. 6.35 Modified cascade control system — Example 6.11

HOY W)

il N

40 80 120 160 ts]

vit)

1k
Fig. 6.36 Response of the cascade control system — Example 6.11

Example 6.12

For the DC motor from Example 3.6 it is necessary to design a position cascade
control. It is assumed that the DC motor is supplied by a power amplifier.

Solution:

From equations (3.94) and the block diagram in Fig. 3.24 it follows that the motor
torque m(t) is directly proportional to the armature current iy(t). Therefore, it is
appropriate to control this current.

Assume that the power amplifier has negligible dynamics and for the control of
the current i,(t) the P controller with gain Kp; will be used, see Figure 6.37a.

By moving the summation node (Tab. 3.1) we obtain the transformed block
diagram in Fig. 6.37b.

In accordance with the block diagram in Fig. 6.37b for the current loop it holds
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KPi
1,(s) _ Ke+Ry _ Ky
() L g Ts+l
Kei + R,
KPi T = La

" Kei+Ry ° Kp+R,
For sufficiently high Kp; there is obtained

o~l T, ~0 = 120 4

1 (5)
Because simultaneously
C .0
KPi

holds (see Fig. 6.37b) the block diagram in Fig. 6.37 can be essentially simplified as it
is shown in Fig. 6.38.

a)
U M, (s)
) a(s) . 1,(s)  M(s) - Q(s) A
_b?_' Kpi—%?_’ LS+ R, > o X Js+b [ 11 s [
C. |«
b)
| lM|(S)
w(S) . I.(s) M(s) . Qs TIAG)
7 KPI g LaS+Ra =Cm._’®_' Jm5+bm g E —

@
A

Kpi

Fig. 6.37 Block diagram of the DC motor with a current loop: a) original,
b) transformed — Example 6.12
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M, (s)
1, (s)  M(s) N (s

Cm | 'QD J.s+h,

A(s)

A 4

w |~

Fig. 6.38 Simplified block diagram of the DC motor with a tuned current loop —
Example 6.12

For the speed loop the P controller with gain Kp, is also used and in accordance
with the block diagram in Fig. 6.39 we get
KPaJCm
Q)  Kpen,+b, Kk,
-Qw(s) J7m3+1 Ta)s+1,
Kp,Crm + b
— KPow T = ‘]m
KPow + bm L KPa)Cm +bm '

(9}

1
Q) KpCntb, K

MI(S)_ Jims_i_]_ _Tws—i_l,
Kp,Cm + by
1

' KpuCo by

Similarly like for the current loop for sufficiently high gain Kp,, of the P controller
for the speed loop we obtain

_ Q) 1
C7 Q) Ts+l

In this case the time constant T, cannot be neglected because the total moment of
inertia J, often has a high value.

The simplified block diagram of the DC motor with a tuned current and speed
loops is shown in Fig. 6.40.

lM 1(S)
0,(s) I(s) M(s) Qs

o=@ o

\ 4

Fig. 6.39 Block diagram of the speed loop of a DC motor with a tuned current loop —
Example 6.12
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Mo [k
T,5+1
£2(s
0,9 [ ® A
> > b >
T,5+1 S

Fig. 6.40 Simplified block diagram of a speed loop of a DC motor with a tuned current
loop — Example 6.12

First consider in the position loop in Fig. 6.41 the P controller with gain Kp. In
accordance with Fig. 6.41 for

Ge(s)=Kp,
we get
As) _ 1
A) Togz 1oy
Koo K,
L
A(s) __ Kp
M) Tog, 1o g
Koo K,
M, (s) K,
T,s+1
Ay(S)  E(s) (s
; © 1 ae
G (s) > > = >
TwS-l—l S
A, (s)

for PI controller

Fig. 6.41 Block diagram of a position loop of a DC motor with a tuned current and
speed loops — Example 6.12

For a tuning of the P controller we will use the standard form (6.95) for the MOM,
for which there holds
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T
va —_w
Kp
1 « 1
2 =— = Kp=—.
§w w KP P 2Ta,
1
gw_ ﬁ
After substitution in the previous transfer functions there is obtained
A(s) 1
A(s) 2T2s®+2T s+1
A(s) 2k,

M,(s)  2T2s2+2T,s+1
From the last transfer function it follows that by the use of the P controller in the
position loop the steady-state control error e (c0) remains in it for the step change of
the load torque m, (t) =m,y7(t).
Therefore there holds (see Fig. 6.41)

En(s) _ Als) _ 2k T,
M,(s)  M,(s) 2T’s*+2T s+1’

the steady-state control error can be easily determined

e, (o) = Iim[sEm—(S)m} =2k T, m,.
$—0 MI(S) S

Now we will use the PI controller with transfer function

1
Go(s)=Kp| 14+ —
C( ) P( T|SJ
in the position loop.

Since the DC motor after tuning of the current and speed loops has the transfer
function in a suitable form for the SOM, see Fig. 6.40 and Tab. 6.13, we can therefore

directly write (T=0,k; =1, T1 =T,)

£~ 1 1
P2kT, 2T,
T, =4T,=4T,,.
In accordance with Fig. 6.41 for the PI controller we get
A(s) _ 4T s+1
A(s) 8T3s®+8T7s? +4T s+1'
AGs) 8k T s

M,(s)  8T3s®+8T’s2+4T,s+1
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Since in the last transfer function the complex variable s arises in the numerator,
the step change of a load torque does not cause the steady-state control error (see the
final value theorem, Appendix A).

The SOM gives a big overshoot. It is caused by the stable binomial
4T s+1

in the numerator of the control system transfer function. That is why the 2DOF PI
controller with b = 0 or the input filter with the transfer function (see Tab. 6.13)
1

G =it

must be used.
Then the resulting control system transfer function has the form
A(S) A(s) 1
=Ge(8)—; T o733 2.2 :
A, (s) A,(s) 8T s”+8T s +4T s+1

On the basis of the above derived relations the simulation of the shaft (angular)
position cascade control of the DC motor was performed for the following parameters:
Jn=0.02 kg m?, a=0.2H, =10, Cn=C=0.05NmA™*=Vsrad?
bm=0.01 Nmsrad?, oo =1 rad, mo=0.5Nm.

The current loop

In the current loop the P controller with sufficiently high gain Kp; is used, e.g. it is
chosen as

K

Kpi =10 = k, =——F— =0.91~1;
KPi""Ra
b -0018~0, % 20005~0.
Kpi + R, Kpi

The speed loop

Also in the speed loop the P controller with sufficiently high gain Kp, is used, e.g.
it is chosen as

K, =10 = Kk, :Mio.gszl;
Kp,Cm + by
T,= _In =0.039; k, = _ =1.96.
Kp,Crm + b, Ke,,Crm + b

The position loop
a) P controller
In the block diagrams in Figs 6.41 and 6.42 the P controller
Gc(s)=Kp
and in Fig. 6.42 the transfer function
Ge(s)=1
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M, (s)
A (s) Au(S) 0,(s) 1,(8) ) I.(s) M(s) . Qs
— 50O Cc(s) | Kea _’?_' e _>®_' Ls+R, [ 1715 ® J.s+h, ”
C, |«

w |~

Fig. 6.42 Block diagram of angular position cascade control of a DC motor — Example 6.12
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should be considered.
In accordance with the previous relations we can write

K, Y ;
2T

e, () =2k T,m,,=0.077rad.

The response of the DC motor with the cascade control for the P controller in the
position loop is shown in Fig. 6.43.

alt) ‘E

[rad] G (t)

1 [ [\
m l,(t) \,

[Nm] [

L m, ()

0 ! I ! I I I >
1 2 3 4 4 [5]

Fig. 6.43 Response of the DC motor with cascade control for the P controller in a
position loop — Example 6.12
b) PI controller
In the block diagrams in Figs 6.41 and 6.42 the PI controller
G (s) = Ko 14—
¢ UTTs
and in Fig. 6.42 the transfer function

1

G )= o1

should be considered.
We will determine the adjustable parameters of the PI controller
K, = 1—i12.82; T, =4T,=0.16.
2T

(4]

The response of the DC motor with the cascade control for the PI controller in the
position loop is shown in Fig. 6.44.
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a(t) L
[rad] Gy, (1)

mj(t) \/

(Nm] |

L m;(t)

Fig. 6.44 Response of the DC motor with cascade control for the PI controller in a
position loop — Example 6.12

Both Figs 6.43 and 6.44 show that even for large simplifications the results of the
simulation illustrate good agreement with assumptions.

The real cascade control of the DC motor must consider the maximum permissible
current in the current loop and the maximum permissible angular velocity in the speed
loop. These restrictions cause significant nonlinearities of the cascade control. Most
often PI controllers are used in current and speed loops, because it is necessary to
consider the dynamics of power amplifiers, sensors and filters. In the position loop a P
or PI controller is used.
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7 STATE SPACE CONTROL

The chapter briefly describes the design of a state controller and observer for the
SISO linear dynamic system.

7.1 State space controller

Development of a state space control is associated with the development of
aeronautics and astronautics. It allows control very complex and unstable systems,
where classical control with 1DOF and 2DOF controllers does not give satisfactory
results.

Consider the SISO controlled linear dynamic system (in state space methods the
name “controlled system” is most often used instead of the plant)

%(t) = AX(t) + bu(t), X(0) = X, (7.1a)
y(t)=c"x(t), (7.1b)

which is controllable, observable and strongly physically realizable [see (3.36) and
(3.37)]. Its characteristic polynomial has the form

N(s)=det(sl —A)=s"+a, ,s" +...+as5+a, =
=(s—5,)(s—5;)...(s—5y),

where s, Sy,..., Sy are the system poles.

(7.2)

The task of the state space controller (state feedback, feedback controller)
represented by the vector (Fig. 7.1)

k=[k;,Ky,....k,]", (7.3)
is to ensure for the closed-loop control system its characteristic polynomial
N, (s)=det(sl —A,)=s"+a" s" " +...+a's+a) =
=(s=95')(s-57)...(s—sy)

w
n -

(7.4)

with given poles s",s;’,...,s

The vector of the state space controller can be obtained by comparing the
coefficients of the control system characteristic polynomial with the corresponding
coefficients of the desired control system characteristic polynomial at the same powers
of complex variable s. In such a way the system of n linear equations is obtained for n
unknown components k; of the vector k. For large n, this procedure is demanding.

The closed-loop control system with the state space controller in accordance with
Fig 7.1 may be described by the equations

() = A X() +bW(), X(0)= X,, (7.53)
y(t) =c"x(t), (7.5b)

where the system matrix is given (see Fig. 7.1b)
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A, =

A—bk'.

(7.6)

The dependence between output y,(t) and input w'(t) in the steady state (t — o)
can be determined on the basis of (3.39), i.e.

Yo = lirrg)[cT (sl —A,) bW =

y, =—C' A, bw .
In order to in the steady state the equality
Yw =W

holds, the correction

(7.7)

(7.8)

a)
. X
W) () X le(t)
—@— b @] [ >
A |
Ty Pa—
b)
w'(t)
—_—) b
C) «
0
w(t) X(t) 1X(t)
2. [@)dr |=>

Y (1)
c' —

Controlled
system

State space
controller

Y ()

Y (®)

Fig. 7.1 Block diagram of the control system with a state space controller without input
correction: a) original, b) modified, c) resultant
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1

T TAD

in the input must be placed (Fig. 7.2).

(7.9)

The state space controller design is easy for the state space model of the
controlled system in the canonical controller form (3.42).

w(t)

w'(t)

»

X(t)

Xolx(t)

J(&)dz |

Ay

Yu(®

Fig. 7.2 Block diagram of the control system with a state space controller

Consider that the matrices A and A, are transformed into canonical controller
forms in accordance with the relations (3.36), (3.47), (3.49) and (3.50), then equation
(7.6) can written in the canonical controller form

A, =A —bk]. (7.10a)
i.e.
[0 1 0 0
0 0 1 0
0 0 0 1
-__a‘v’(v) _aiv _Z;v agv‘l . (7.10b)
0 0 1 0
=l . T e | L U o
0 0 0 1
|8 —& —& —ang] [L]
We can see that the equalities hold
-a',=—a -k, =
kgy=a",—a, for i=1,2,...,n. (7.11)
The last equalities can be written in the vector form
k.=a"-a, (7.12)
where
a"=[ay,a),....a",]", (7.13a)
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a=[a,,a,,...,a, 1] (7.13b)

are the vectors of the coefficients of the characteristic polynomials Ny (s) and N(s) [see
(7.4) and (7.2)].

We have received the vector k. of the feedback state space controller in the
canonical controller form, and we must therefore transform it back for the original
controlled system (7.1). We can write

kIx. =k'x
cre = k' =KT,' =
X, =T, 'x
k' =@"-a)'T.7, (7.14)

where the transformation matrix T is given by the relations [see (3.47), (3.49) and
(3.50)]

T, =Q.,(Ab)Q, (7.15a)
Q.,(Ab)=[b, Ab,...,A"'b], (7.15b)
[a a, a_, 1]
a, 1 0
Q=| ... ... ... . ] (7.15c)
a, 1 .. 0 0
1 0 .. 0 0]

The state space controller is able to ensure the required pole placement of the
control system, i.e. it is able to ensure its dynamic properties, but it cannot remove the
harmful effect of disturbance variables.

In the case of the existence of the disturbances v(t), the state space model of the
controlled system will be as follows

v(t)
—
Xo
wit) ] lx(t) a0
_>(‘2‘>_> = —@— b —> [(®)A7 | Qg T >
A | —
[P a—

Fig. 7.3 Block diagram of a control system with a state space controller and additional
loop with an I controller for disturbance attenuation
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X(t) = AX(t) + bu(t) + Fv(t), x(0)= X,

y(®) =c'x(1),
where v(t) is the disturbance vector of the dimension p, F — the matrix of the dimension
(nxp).
In order to eliminate disturbances v(t) an additional loop with a I or PI controller

Is added, see Fig. 7.3. It is obvious that the number of poles is increased by 1. This case
is not further considered in the text.

Procedure:

1.  Check the controllability and the observability of the controlled system (plant)
[relations (3.36) and (3.37)].

2.  Formulate the requirements for the control performance and express it by the
desired pole placement of the control system.

3. Determine the coefficients of the characteristic polynomials N(s) and Ny(s)
[relations (7.2) and (7.4)].

4.  Compare the coefficients of the control system characteristic polynomial with the
corresponding coefficients of the desired control system characteristic polynomial
at the same powers of complex variable s and solve the system of n linear
equations for n unknown components of the vector k. In the case of high n use the
transformation matrix (7.15) and the formula (7.14).

On the basis of the relation (7.9) determine the input correction ky,.
Verify the received control performance by a simulation.

Example 7.1
For the SISO linear dynamic controlled system (plant)
X = —4Xs —2U,
y=-2X +4X, + X3
it is necessary to design the state space controller which ensures for the closed-loop
control system the poles

s'=s, =53 =—2.

Solution:
It is obvious that for the controlled system the relations hold
X, -1 0 -4 2
X=[X%| A=| 2 -2 -2|, b=| 1|, ¢"'=[-2 4 1].
X3 0 0 -4 -2

Controllability verification:
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2 6 -38
Qco(Al b) :[b,Ab,Azb] = 1 6 -16 y
-2 8 -32

detQ,,(A,b) =-504 =0 = The controlled system is controllable.

Observability verification:

c' -2 4 1
Qu(Ac)=[c"A|=| 10 -8 -4
c'A?| |-26 16 -8

detQ,,(A,c')=432=0 = The controlled system is observable.

From the controlled system transfer function

Y(s) det(sl —A+bc")—det(sl —A) —2s”+6s+92
U(s) det(sl — A) s*+7s?+14s5+8

Guy (S) =

it follows: ag=8,a; =14, a,=7,a3=1,bp=92,b; =6, b, =—2, i.e.
a=[8 14, 7], c =[92, 6 -2f.
The desired control system characteristic polynomial has the form
N, (s) =(s+2)° =s° + 65> +125 +8,
and therefore the vector of its coefficients is
a"=[8, 12, 6.

The transformation matrix (7.15) has the form

a a, 1 32 20 2
TC=QCO(A,b)Q=[b,Ab,A2b] a, 1 0|=|40 13 1l =>
1 0 O -4 -6 -2
5 1 1]
126 18 84
ch1: E _1 i
126 9 21
47 2 16
126 9 21]

On the basis of the relations (7.14) there is obtained

kT:(aW—a)TTclz{ﬁ, 0, ﬂ

The state space model of the closed-loop control system without the input
correction will be in the form
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8, _36]

27 78
7 1

—A-bk =| 2L 2 B
A 14 7
1,2

|7 7|

b=[2, 1, -2]", c=[-2 4 1],

I.e.
X1=—§xl—§x3+2w’,
7 7
X, :£X1—2X2 —§x3+w’,
14 7
1 20

Xo=—X; —— Xo — 2W,
3 7 1 7 3
Yo = —2% +4X, + Xs.
The input correction is given by the formula (7.9)

koot _2
" CAMD 23
and the corresponding state space model of the control system with the input correction
has the form

nul(2) &

w(t)
N i

Fig. 7.4 Step response of a control system with a state space controller and input
correction — Example 7.1
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8 36 4
, —7x1—7x3+2—3w,
X, £X1—2X2—EX3+£W,
14 7 23
1 20 4

X X ——X3——W
A X
Yo = —2% +4X, + Xs.
The step response of the control system with the state space controller and the
input correction is shown in Fig. 7.4. The initial undershoot is caused by the unstable
zero (s, =8.446).

7.2 State observer

The state variables in real dynamic system cannot often be measured due to their
unavailability or high measuring costs. In these cases it is necessary to use the state
observer (estimator).

We will focus on the design of the Luenberger asymptotic full order observer
(further only the observer), i.e. such the observer which estimates the state variables
which are asymptotically approaching the real state variables.

Consider the SISO linear dynamical system (7.1), which is controllable,
observable and strongly physically realizable with the characteristic polynomial (7.2).

For this linear dynamic system the Luenberger observer has the form (Fig. 7.5)

X(t) = AR()+bu() +1y(t), X(0)=%,,
§(©) = X(0),
where A, is the square observer matrix of order n [(nxn)], b; — the vector of observer
input of the dimension n, ¢, — the vector of observer output of the dimension n, | — the

vector of observer correction of the dimension n, by ,,A* are marked the asymptotic
estimates of the corresponding variables.

(7.16)

After the definition of the state error vector &(t) by the relation

e(t) = x(t) — x(t) (7.17)
and considering the relations (7.1) and (7.16) we get
£(t) = (A-IcT)x(t) — AX(t) + (b—b)u(t). (7.18)

It is clear that the state error vector &(t) should not depend on the input variable
u(t) and the estimate ¥ (t) for the real state x(t) should be c'x(t), and therefore it must
hold

b,=b, ¢, =c. (7.19)
If we choose
A =A-Ic (7.20)

then for the assumption (7.19) the linear differential equation
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B)= Aclt), & =%~ % (7.21)

is obtained which describes the time course of the state error &(t). The initial estimate
X, is supposed zero in most cases.

It is clear that for the asymptotic state estimate X(t) it must hold
t—>o00 = X() > x(t) = &(t) >0, (7.22)
i.e. the linear differential equation (7.21) must be asymptotically stable.

It is obvious that in order for the state estimate X(t) to be sufficiently accurate

and fast for the changes of the real state x(t), the observer dynamics described by (7.16)
and expressed by the characteristic eigenvalues of the matrix A; must be faster than the
dynamics of the observed system (7.1), expressed by the characteristic eigenvalues of
the matrix A. In the case of state space control the dynamics of the observer must be
faster than the dynamics of the closed-loop control system.

The observer characteristic polynomial is
N, (s) =det(sl - A) =
=s"+al s"M+. . +als+al=(s—p)s—p,)...(s-p,),

a' =[a},a,...a ], (7.24)

(7.23)

where p; are the characteristic eigenvalues of the matrix A, (the observer poles), a' — the
vector of the observer characteristic polynomial coefficients.

Similarly, the characteristic polynomial of the observed system (7.1) is given by
(7.2) and the vector a is given by its coefficients (7.13b).

The observer asymptotic stability demands fulfilment of the conditions
Rep, <0 pro i=12,...,n (7.25)

and furthermore, in order for the observer to have faster dynamics than the observed
system, its all poles p; must lie to the left of all poles s; of the observed system, i.e.

min|Re p;| > max|Res;|. (7.26)

I<i<n I<i<n

The convergence X(t) — x(t) will be faster, if there will be greater margin in the

inequality (7.26). It is often stated ten times, but too great a margin in the inequality
(7.26) leads to large values of the components |; of the state correction vector I, and
therefore to a large amplification of noise. Therefore, this margin shall be chosen from
twice to five times (it does not apply for integrating systems).

The observer poles are usually chosen as multiple real
p.=—p, (7.27)
and therefore the conditions (7.26) can be written in the form
| p| > max|Res;|. (7.28)

I<i<n

In this case, the observer characteristic polynomial in accordance with the
binomial theorem has the form

176



VITECEK, A., VITECKOVA, M. Closed-Loop Control of Mechatronic Systems

N,(s)=(s+p)" = i[?)pjs”j =s"+nps"t+...+np" s+ p". (7.29)

=0

Using the observer multiple real pole it ensures the convergence (7.22) with the
relative damping equal 1. If it is possible to have very suitable multiple pairs, the
selection of multiple pairs

—(1xj)p (7.30)

will guarantee that the convergence (7.22) will be ensured with the relative damping

equal 1/ /2. =0.707.. This choice ensures fast convergence and also reduces the value of
p. The partial characteristic polynomial

s®+2ps+2p°. (7.31)

v
(e

X
-®~ J. CT >
I_ Observed

system

| |e
Luenberger
2 observer

>

b) l Xo
u X J' X y
» b —>(8)—> _>® cT >

Observed

I | system

A y
Y R U o
P— I <
® Luenberger
| I I observer

Fig. 7.5 Block diagram of the Luenberger observer: a) original, b) transformed
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corresponds to the pair (7.30).

The block diagram in Fig. 7.5a can be transformed in the equivalent block
diagram in Fig 7.5b, from which follows the operation of the observer. On the basis of
the difference of the output variables y(t) — y(t) the state estimate X(t) is corrected. It
is clear that the Luenberger observer is in fact the model of the observed system with
the running feedback correction

X(t) = AX(t) +bu(t) + 1[y(t) - y(©)]. (7.32)

It is in principle a control system which tries to nullify the difference y(t)— y(t),
and thus the state error vector g(t) = x(t) — X(t). Fig. 7.6 shows it clearly. The vector |
is therefore also called the Luenberger observer gain vector.

When designing the observer in accordance with the relations (7.16) and (7.19) it
IS necessary to determine the unknown correction vector I. It can be determined by
comparing the coefficients of the observer characteristic polynomial with the
corresponding coefficients of the desired observer characteristic polynomial at the same
powers of the complex variable s. In such a way the system of n linear equations is
obtained for n unknown components I; of the vector I. For large n, this procedure is
demanding.

Xo X .
u X y I y
» (A,b) LT | (Ab) > ¢ —>
— ~ N — U
Observed Luenberger
system observer

Fig. 7.6 Interpretation of the Luenberger observer

The design of the observer can be easily solved if the model of the observed
system (7.1) has the canonical observer form (3.44)

Xo (1) = AgXo (1) +bou (1),

(7.33a)
y(t) =g %, (1),
where
_ 0 0 _a _
1 0 -a
O l cee O - 3.2
A = : (7.33b)
0 O 0 -a.,
10 0 1 -a.,
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by =y, b1, 0, 5,0, 4T (7.33c)
¢! =[0,0,...,01]. (7.33d)

The canonical observer form can be obtained directly from knowledge of the
transfer function (3.41) or using the transformation (3.51)

X, () =T, 'x(t), A, =T,"AT,, b,=T,"0, c; =c'T,, (7.34)
where the transformation matrix of the order n [(nxn)]
T, =QQy(AcT) (7.35)

is given by the observability matrix of the observed system (7.1), i.e. (3.37) and the
matrix Q is given by the relation (7.15c) [see also (3.49)].

The observer (7.16) for (7.19) can also be expressed in the canonical observer
form

Xo (£) = Ay Ro (t) +bou + 1, y(©),

(7.36a)
§(1) = co %o (1),
where
0 0 0 -a ]
1 0 -a
_ Al
A - o1 ... 0 a, (7.36b)
0 0 ... 0 -a_
0 0 ... 1 -a|

Is the square observer matrix of the order n, in which the negative coefficients of the
observer characteristic polynomial (7.23) appear in the last column.

The block diagrams for the canonical observer forms are the same as in Fig. 7.5,
but all vectors and matrices must be provided with subscript "o".

In accordance with the relation (7.20) we can write

0o ... 0 —a,—ly,
1 0 ... 0 —a-l,
01 .. 0 -a-lI
A, =A —-lcl = 2 (7.37)
0 0 .. 0 —a,,-l,
0 0 ... 1 —a -l |

From a comparison of the relations (7.36b) and (7.37) it follows
ly=a,-a, for i=12,...,n,
i.e. in accordance with (7.24) and (7.13b)
l,=a'-a, (7.38)
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where |, is the observer correction vector in the canonical observer form.

Therefore (7.34) holds, it is possible to write
lLy=T"ly =
oY = o W (7.39)
=TI =T, (a'-a)

Consider now, that the state space controller uses the state estimate X(t) for
control (Fig. 7.7), i.e.

X(t) = Ax(t) — bk K(t) .

Y ()

c >

W) WO X X l

—’k

|
&
|
3

Controlled
A ¢ system

> b (Xt [(0)U7 o Luenberger
l X(t) observer
A| | G —
KT | State space

controller

Fig. 7.7 Block diagram of a control system with a state space controller and
Luenberger state observer

Therefore the equality holds
—bkTX(t) =—bk"x(t) + bk &(t),

we can write the state equation of the control system with state space controller and the
Luenberger observer in the form [see (7.6)]

X(t) = A, X(t) + bk &(t),
£(t) = As(t),

X (t T x(t
XA _| A bk X)) (7.40b)
£(t) 0 A |e&)
It is the upper block triangular matrix, whose characteristic polynomial is given
by the relation

(7.40a)

or
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N, (SN, (s) =det(sl — A,)det(sl — A). (7.41)

This means that the dynamic properties of the control system with the state space
controller and the Luenberger state observers are mutually independent.

It is the so called separation principle.

It is very important because the state observer and the state space controller can be
design independently. We can design a state space controller that ensures the required
control performance and then we can separately design the Luenberger state observer,
which ensures the correct state variable estimates. A well-designed state observer
deteriorates the resulting dynamics of a control system with a state space controller very
little.

Procedure:

1.  Check the controllability and observability of the controlled system (plant)
[relations (3.36) and (3.37)].

2.  Determine the coefficients of the characteristic polynomials N(s) and Ni(s)
[relations (7.2) and (7.23)].

3. On the basis of the pole of the control system with the largest absolute real part
determine the multiple pole (7.27) or multiple pairs of poles (7.30) in such a way
to ensure the sufficiently fast dynamics of the observer.

4.  Compare the coefficients of the observer characteristic polynomial with the
corresponding coefficients of the desired observer characteristic polynomial at the
same powers of the complex variable s and the solution of the system of n linear
equations is obtained for n unknown components I; of the vector I. For large n, use
the transformation matrix (7.35) and the formula (7.39).

5. Verify by simulating the received estimates of the state variables

Example 7.2

For the control system with the state space controller from Example 7.1 it is
necessary to design the Luenberger state observer.

Solution:

In the Example 7.1 it was shown that the controlled system is controllable and
observable, and that its characteristic polynomial has the form

N(s) =det(sl — A) =s*+7s? +145+8=(s+1)(s+2)(s+4),
where
s =-1 s,=-2, s;=-4
are the controlled system poles and
a=8a=14,a=7 = a=[8,14,7]
are its characteristic polynomial coefficients or the vector of these coefficients.
Since

max|s;| = 4
1<i<3
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it is possible to choose
pL=pP2=p3=p=-8
i.e. the observer characteristic polynomial and its coefficients are

N,(s)=(s— p)® =(s+8)°> =5° +24s* +1925 + 512 =

ay =512, a} =192, a, =24 = a' =[512, 192, 24]".
a)  Direct solution
The observer matrix is
-1 0 -4] [
A=A-Ic"=l2 -2 -2|-|L[-2 4 1]=
0 0 -4 |l

20,-1  —4, -4

After unpleasant computations the observer characteristic polynomial
N, (s) =det(sl - A) =
=%+ (=2, + 41, +1,+7)s? + (~4l, + 201, + 31, +14)s +16l, +16l, — 22, +8
was determined.

Comparing the coefficients at the same powers of the complex variable s for both
of the observer characteristic polynomials, the system of linear algebraic equations with
respect to unknown components Iy, I, and I3 of the observer correction vector | was
obtained, i.e.

773
161, +161, — 221, =504 T
— 41, + 201, +3l, =178} = I, =%,
=21, +4l, +1;, =17 32

|3 :—E.

b)  Solution by transformation
In accordance with (7.15c¢) there is obtained

a, a, 1] [14 7 1
Q=|a, 1 0|=|7 1 0|
1 0 0l |1 00

The transformation matrix can now be determined
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16 16 -22
T,'=QQ,(Ac)=|-4 20 3 |=
-2 4 1
1 13 61 |
54 54 54
ol L 7T 5]
216 108 54
1 2 8
18 9 9

After substituting into the relation on the observer correction vector I, the same
result
_13_
54
332
27
_32
9

1=To(a' —a)=

is obtained as for the direct solution.

The step response of the control system with a state space controller with and
without the Luenberger state observer is shown in Fig. 7.8.

s (F) A
»ul®) wi)

1+

without observer

with observer

8 t [5‘3

Fig. 7.8 Influence of the Luenberger state observer on the step response of a control
system with a state space controller — Example 7.2

183



VITECEK, A., VITECKOVA, M. Closed-Loop Control of Mechatronic Systems

APPENDIX -A
LAPLACE TRANSFORM

The Laplace transform is a very effective tool for the description, analysis and
synthesis of continuous (analog) control systems.

The purpose of a transform is the transfer of a complex problem from the original
domain in the transform domain, where this problem can be easily solved and then it
can be transferred back in the original domain in accordance with Fig. A. 1.

ORIGINAL OF DIRECT TRANSFORM OF
PROBLEM TRANSFORM PROBLEM

! ' !

DIFFICULT i EASY
SOLUTION i SOLUTION
ORIGINAL OF INVERSE TRANSFORM OF

SOLUTION [ TRANSFORM SOLUTION
< ; :

N

ORIGINAL DOMAIN TRANSFORM DOMAIN

Fig. A.1 General diagram for solving problems by means of a transform

In our case the original domain is the time domain and the transform domain is
the complex variable domain. For example, a differentiation and an integration in the
time domain are difficult problems, i.e. they are difficult mathematical operations.
These difficult operations in the time domain correspond to simple algebraic operations
in the complex variable domain. Similarly a solution of linear differential equations in
the time domain corresponds to an easy solution of algebraic equations in a complex
variable domain.

The Laplace transform is defined by the formulas
X (s) =L{x(®)}=[x(t)edt , (A.1)
0

x(t) = LH{X (s)} = Zif X (s)eds , (A.2)

c— joo

where s = a + jw is the complex variable (o« = Re s, ® = Im s), t — the real variable (in
our case — time), x(t) — the original — the real function defined in the time domain for
t € (0,0), X(s) — the transform — the complex variable function defined in the complex
variable domain, j= V-1 — the imaginary unit, L — the operator of the direct Laplace
transform, L™ — the operator of the inverse Laplace transform, ¢ — the real constant
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selected so as to the function X(s) has no any singular points in the half plane for
Res>c.

From formula (A.1) it follows that the Laplace transform maps the function of the
real variable x(t) on the complex function of the complex variable X(s). The value of the
original x(t) for t >0 represents in physical interpretations a magnitude of the given
physical quantity in the time t. Therefore the physical dimension of the complex
variable s is time *. The imaginary part of the complex variable s, i.e. @ = Im s has the
physical interpretation of the angular frequency with the physical dimension time ™. The
time t changes continuously and therefore the Laplace transform is a continuous
transform. It is obvious that the Laplace transform is first of all suitable for linear
continuous systems which can be described by means of linear differential, integral and
integrodifferentilal equations with constant coefficients.

In order for the time function x(t) to be original it must be:
a) equal to zero for the negative time, i.e.:

X(t) = {;(t) : i gﬁ (A.3)

b) of the exponential order, i.e. it must satisfy the inequality

X(t)|<Me™, }

M>0,¢, ¢ (— oo,oo),t € <O,oo); (A4)

C) piecewise continuous.
In most of time functions used in engineering the last two conditions are fulfilled.
For example, function x(t) = e'” does not hold the second condition.

The first condition can be held by the multiplication of the given time function by
the unit Heaviside step defined by the formula

1 t=0,
n(t) = {0 (<0, (A.5)

Before using the Laplace transform every continuous function x(t) must be
multiplied by the unit Heaviside step, and that is why notation x(t)7;(t) is mostly
simplified and the symbol 7(t) is omitted.

An original is indicated by a small letter and its transform is indicated by a capital
letter. The relation between an original and its transform is called a correspondence
and it is written in the form

X(t) 2 X (s). (A.6)

The correspondence between an original and its transform is single valued in a
Laplace transform if we consider time functions equivalent, in this case when their
values differ by finite values in finite isolated points.

In the Laplace transform in the case that the function x(t) is not continuous in the
point t = 0 the initial value x(0) is considered as the right-hand limit.

X(0) = x(0,) = lim x(t). (A7)
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The same is applied for a derivative of the function x(t) and therefore the values

ax©) x(O)’ ... must be considered as the right-hand limits.

x(0),

Example A.1

By the help of the direct Laplace transform definition formula (A.1) it is necessary
to determine the transforms of the given time functions (originals):

a) nt—Ty), b)t, c)e™, d)sinat, €) At) (a o Ty are the constants).

Solution:

o0

a) L{?](t _Td )}: Jﬂ(t _Td )efstdt _ Te—stdt =|:_1est:| =1edes 1
Td

0 T, S
~ 1 —Tys
n(t—Td)=ge - (A8)

We can see that the time delay T of the original corresponds to the multiplication
of the transform by the exponential function e '**.

0 1 ® » 1 1 0 1
b) Litj=[teMdt=|t|-=e™ || —[|-Ze [dt=|-Se| ==,
e (e e (G el

taiz . (A.9)
S

The integration method by parts was used

b b
fuvdt=[u]> - [uvdt, (A.10)

a

whereu=t, v=e™.

C) L{e—at}: Te—at e Stdt = Te—(s+a)t dt = |:_Le—(s+a)t:| _ L ’

0 0 s+a , s+a
etz (A.11)
S+a
d) Lisinet}= T(sin wt)e'dt = Tzi (ej“"— e‘j“")e‘St dt =
0 0¢)

o0

R
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11 1) e
2ils—jo s+jo) s®+w?

sinat = ——— (A.12)
S“+w
The Euler formula was used
sin ot =%(ej“"—e“""‘). (A.13)
J

e) The symbol &t) represents the unit Dirac impulse defined by the relations

_{o S(t)x(t)dt = x(0), (A14)
5(t)=0fort =0,

o0

L{o(t)}=[o(t)edt =€ =1,
s(t)=1 . (A.15)

Example A.2
By the help of the direct Laplace transform definition formula (A.1) it is necessary
to determine the transforms of the given mathematical operations: a) ax,(t)+a,x,(t),
d x(t)

t
where aj, a, are any real or complex constants b) et C) jx(r)dr.
0

Solution:

a) L{alxl(t) TaX%, (t)} = [alxl(t) TaX%, (t)]eistd t=

o—8

= alTxl(t)e‘S‘dt + azofx2 (t)e'dt =a,X,(s)+ a,X,(s)
0 0

ax (t)£a,x,(t)2 a,X,(s)+a,X,(s) . (A.16)

The derived correspondence (A.16) expresses the linearity of the Laplace
transform.

b) L{d X(t)} = T dx t)e’“dt = [x(t)e’St ]000 + Tsx(t)e’s‘dt = sX(s)—x(0),

dt dt
dg—?) 2 sX(s)-x(0). (A.17)
: : . dx(t)
The integration method by parts (A.10) was used, where u=e™, v= T

Similarly the transform from the n-th order derivative can be determined
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d"x(t) . ., - a2 dx(0) d"* x(0)
=s ' X(s)-s " x(0)-s - A.18
dt" ) ©) dt dt"* (A1)
For zero initial conditions a simple and very important formula holds
n
dTXn(t) 25"X(s). (A.19)

We can see that the n-th order derivative in the time domain corresponds to the
multiplication of the transform by the n-th power of the complex variable s in the
complex variable domain.

[x(r)dz = % X(s). (A.20)

t
The integration method by parts (A.10) was used, where u=[x(r)dz, v=e"" .
0

We can see that the integration in the time domain corresponds to the division of
the transform by the complex variable s in the complex variable domain.

In the Examples A.1 and A.2 transforms of some simple time functions were
derived on the basis of the direct Laplace transform definition formula (A.1). The use of
the inverse Laplace transform definition formula (A.2) is time consuming and labour
intensive. It demands very good knowledge of the theory of complex variables.
Therefore the Laplace transform definition formulas (A.1) and (A.2) are not often used
in practice. The Laplace transform tables are used advantageously in practice. The
basic correspondences are given in these tables, see Tabs A.1 and A.2.

Example A.3
On the basis of the correspondence [see (A.11)]
at . 1
gt _— (A.21)
s+a

and properties of the Laplace transform from Tab. A.1 it is necessary to derive further
correspondences.

Solution:

a) For a =0 (property 19 in Tab. A.1) from the correspondence (A.21) we can
obtain

[9))

o

Il

=

>
n |~
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n(t)é% . (A.22)

b) On the basis of the linearity (property 3 in Tab. A.1) and the correspondences
(A.21) and (A.22) we can write

1 1 a
t _ —at 2 = _ — ,
(t)-e s s+a s(s+a)
loea_2 A.23
° s(s+a) (A.23)

c) By differentiation of the correspondence (A.21) with respect to the parameter a
(property 20 in Tab. A.1) we obtain

d ( a . d 1 1
el ——te 2 - ’
da(e J--te da(s+a} (s+a)f

feta_ 1 (A.24)

(s+a)

d) From the correspondence (A.24) for a =0 (property 19 in Tab. A.1) we obtain
[see (A.9)]

te = (A.25)

e) On the basis of the integration in the time domain (property 12 in Tab. A.1) we
can get from the correspondence (A.25) the new correspondence

t
jrdrél(iz)
5 s\s

t?2 1
— &=, A.26
2 S8 (A.26)

f) From the correspondence (A.26) by the help of property 8 in Tab. A.1 we
obtain

t? . 1

Leata _ (A.27)
2 (s+a)’

g) From the correspondence (A.21) for a =+ jo we get
priot o1

SFjo
On the basis of the Euler formulas [see also (A.13)]

sin a)tzzij(ej“"—e‘j“") , coswt:%(ej”%e‘j“’t).

we obtain the further two important correspondences [compare with (A.12)]:
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o1 1 1 @
Sinwt=—; — =%
2j\s—jo s+jo) s“+w

sinot = ————, (A.28)
S“+w
L1001 1 S
cos wt= — —t—— =
2\s—jo sS+jow) S“+w
coswt = — (A.29)

s? +w?

h) We directly get two further important correspondences on the basis of the last
two correspondences (A.28) and (A.29) and property 8 in Tab. A.1

e sinats — (A.30)
(s+a)f +o

e cosat = % . (A.31)
(s+af +o

We can easily verify by comparison with Tabs A.1 and A.2 that all the derived
correspondences are correct. In the similar way it is possible to obtain further
correspondences. We can see that by making practical use of the Laplace transform it is
enough to have knowledge of a few basic properties and several important
correspondences.

Determining originals from transforms

We can directly use the Laplace transform tables in cases where we find originals
or transforms in the suitable forms. We mostly make do with simple modifications.
Problems can arise for the inverse Laplace transform because some transforms are
complex and we must decompose them to their simplest expressions which can be
found in the Laplace transform tables. We very often use partial-fraction expansion and
residual methods.

In practical cases the transform has mostly the form of the strictly proper
function

m
x(s):M(S):bms +...+bls+b0’ Tem (A32)
N(s) as"+...+as+a,

If the denominator degree n is not greater than the nominator degree m it is
necessary to divide the nominator by the denominator.

We can simplify the transform in the form of the strictly proper function (A.32)
by the partial-fraction expansion in expressions which may be found in the Laplace
transform tables.

For the polynomial in the denominator (A.32) the relation holds

N(s)=a,s"+...+as+a,=a,(s—s, s —5,)...(s—s,), (A.33)
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where sq, S,, ..., S, are the roots of the polynomial N(s) and they are simultaneously the
poles (singular points) of the transform X(s).

The poles s; may be simple or multiple. At first consider the simple poles, which

can be real or complex. If they are complex then they arise in complex conjugate
couples, e.g.

s, =a+]p, Sy=a—]p. (A.34)
For the complex conjugate couple (A.34) the relation holds
(s—s; Xs—5.,1)=5> 208 +a®+ % =s* +cs+d. (A.35)
The couple of the strictly imaginary poles
s=]Jp Su=—18 (A.36)
is the special case of (A.34) or (A.35) for a=c=0.

Now consider the multiple poles. For the r-multiple real pole s; it is possible to
write

(s-5,). (A37)

Similarly in accordance with (A.35) we may also write for the r-multiple complex
conjugate couple poles s; and s;;¢

(s—s) (s—si) =(sz+cs+d)r. (A.38)

The transform X(s) of the strictly proper function (A.32) for the given types of
poles can be written in the form (for a, = 1)

X(s)= M(s) _ M(s) . (A.39)
N(s) (s—a)s—b) (s2+cs+d)s?+es+ 1 )
where (s—a) corresponds to the simple real pole a,
(s—b)r corresponds to the r-multiple real pole b,

(s®+cs+d) corresponds to the simple complex conjugate couple

%QciJ?iZE) (A.40)

(s +es+ f)*  corresponds to the g-multiple complex conjugate couple
%(—eiw/e2—4f). (A.41)

The transform X(s) expressed by the relation (A.39) may be written in the
decomposed form

A B B B
X(s)= L2 4T
) s—a s-b (s—b) (s—b)
Cs+D  Es+R | Es+F Eqs+F,

5 > > st ——
s“+cs+d s“+es+f (s“+es+f) (s“+es+ 1)

(A.42)

where constants A, By, By, ..., By, C, D, Ey, Ey, ..., Eg, Fq, Fyp, ..., Fy are determined,
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e.g. by the substitution method, the method of indefinite coefficients or the residual
method.

The introduced procedure is called the partial-fraction expansion.
Example A.4
It is necessary to find the original x(t) from the its transform

25% + 752 +4s+1
X (s)=
) s2(s+1)

(A.43)

Solution:

The transform (A.43) is a strictly proper function and therefore in accordance with
(A.42) we can write

2s°+7s°+4s+1 A A, B B,
2 2 =< ta2tq " P
s?(s+1) s s° s+l (s+1)

(A.44)

a) Substitution method
After multiplying the equation (A.44) by the denominator of its left side we get

25° +75% + 4s+1= As(s+1) + A,(s+1f + Bs?(s+1)+ B,s. (A.45)

The equation (A.45) holds for any s and therefore it must hold also for the poles
of the transform X(s), i.e.:

s=5=0 = 1=A,

As further values of the complex variable s we select
s=1 = 14=4A +4A, +2B, +B,
and using the determined constants A,, B, after modification we get
2A +B =4.
We select further
s=-2 = 5=-2A+A —4B,+4B,

and similarly as in the previous case we use the determined constants A, and B,, and
after modification we get

A +2B =2.
By solving the simple equation system
2A +B, =4,
A +2B =2
we obtain A; =2 a B;=0.

The partial-fraction expansion of the transform (A.43) has the form
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2 1 2
X(S)=—+5+——=.
) S+SZ+(S+1)2

By the help of the Laplace Transform Table A.2 we easily obtain the original
x(t)=2n(t)+t+2te =2+t+2te™, t>0. (A.46)

b) Method of indefinite coefficients
We modify the relation (A.45) with respect to the powers of the complex variable
s and we get
28 +7s? +4s+1=(A +B,)s* +(2A + A, + B+ B, )s* +(A +2A,)s + A, .

The coefficients for the same powers of the complex variable s must be the same
and therefore these relations hold

2=A+B,
7=2A+A,+B, +B,,
4=A+2A,,

1=A,.

By solving the equation system we get the coefficient values: A; =2, A, =1,
B1 =0 and B, = 2. The next steps are identical like in case a.

¢) Residual method
We use the formula 22 (row) from Tab. A.1

()= 3 timC fis s ) x ()],

i
T (r 1) sl—rjga ds"™

where 1=1,2;5,=0,r1=2;5,=—1,r,=2(n=ry +r,=4).

After substitution (A.43) we successively obtain:

X(t):"mi 233+752+4s+1e3t d 2s3+7sz+4s+1est _
(s+1Y 2

s=>0ds S
. | 652 +14s+4 253 +7s*+4s+1 o 25 +7s?+4s+1
=lim >—¢ -2 3 e+ 5 te” |+
(s+1) (s+1) (s+1)

. | 652 +14s+4 253 +T7s°+4s+1 o 25°+7s?+4s+1.
+ lim| —————e”— e’ + te™ |=

s—>-1ds

s—0

2 _
s? s s?

s—-1
—(4-2+t)+(- e+ et 2te )= 241+ 2te .
We can see that the result is the same like (A.46).

Example A.5
It is necessary to determine the original x(t) for the transform
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3s? +22s5+13
X(s)= . A.47
) sis2 +6$+13i ( )

Solution:

The polynomial in the denominator of the transform (A.47) has complex
conjugate poles and therefore its partial-fraction expansion has the form

3s"+225+13 A Bs+C

=t A.48
s(s2+65+13) s s2+65+13 (A.48)

a) Substitution method
We multiply the equation (A.48) by the denominator of its left side and then we
get
35% +225+13 = Als? +65+13)+(Bs + C)s. (A.49)

This equation holds for any s, therefore we select 3 different values and then we
obtain

s=5 =0 = 13=13A =A=]
s=1 = 38=20A+B+C = B+C =18,
s=-1=>-6=8A+B-C = B-C=-14.

We get the linear equation system
B+C =18,
B-C=-14,

which has the solution B=2 and C = 16.

In accordance with (A.47) and (A.48) we can write

X(s) 1 25+16

s s2+65+13°
Now we use results (A.30) and (A.31) from the example A.3.
X(s)=1+ 2(s+3)+2-5 1, 2(s+3) L 25

s (s+3f+2° s (s+3F+2% (s+3F+22

and we obtain the original

x(t)=7(t)+2e"* cos 2t + 5e > sin 2t =

(A.50)
=1+2ecos2t+5e *sin2t, t>0.

b) Method of indefinite coefficients
The relation (A.49) after modification has the form

3s? +225s+13=(A+B)s* +(6A+C)s+13A

The coefficients at the same powers must be the same and therefore it may be
written
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3=A+B,
22 =6A+C,
13=13A
From this equation system there is the result A=1, B=2 and C =16.
The next steps are the same as in previous case a).
The use of the residual method for complex conjugate poles is more elaborate and

therefore it is not used in this case.

Example A.6

It is necessary to derive formulas for the initial and final values of the time
original (property 16 and 17 in Tab. A.1).

Solution:
a) Initial value

We expand the original x(t) in the MacLaurin series
)= x(0)+ X0 02 X0
1 2! 3
and then we use the Laplace transform

(0-10.0,19. 10

It is obvious that after multiplication of the left and right side by the complex
variable s the relation holds (if it exists)

x(0)= lim sX (s) . (A.51)

b) Final value
For the transform of the derivative X(t) it holds [see (A.17)]:

L{)’((t)}:zx(t)e“dt — sX(s)-x(0),

o0

lim g x(t)e tdt = lim[sX (s)—x(0)],

s—0 s—0

I)‘((t)dt =limsX(s)-x(0),

s—0
X(o0)—x(0)= lim sX(s)—-x(0).
S
Therefore we obtain (if it exists)

x(o0)=limsX(s) . (A.52)

s—0
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Example A.7

It is necessary to derive the transforms of the original multiplied by the
exponential function (complex shifting in the complex domain) and the delayed original
(property 8 and 6 in Tab. A.1).

Solution:
a) Multiplication by exponential function

L™ x(t)}= [ x(t)e :*dt = [x(t)e"dt = X (u) = X (s +a),

0 0
e x(t)z X(s+a) . (A.53)

The substitution u=s+a was used.

b) Delayed original x(t—a), a>0

x@—®={

0 t<a,
x(t—a) t>a,

L{x(t—a)}= Tx(t —a)edt= Tx(u)e‘s(“a)d u=

0 0

—e ™ Tx(u)e’sud u=e"*X(s),
0

x(t—a)ze™ X(s) . (A.54)

The substitution u=t—a was used.

196



VITECEK, A., VITECKOVA, M. Closed-Loop Control of Mechatronic Systems

Tab. A.1 Laplace transform - definition formulas and basic properties

Definition formulas

1 X(s) = L{x(t)} = Ix(t)e“dt

, (t)= X (s)} = %f X (s)eds
Linearity

3 L{al)&(t)i X, (t)} = alxl(s)i azxz(s)
Similarity

4 L fax(at)} = X @ a>0

Convolution in time domain

5 L{j X t— o), (T)dr} _ L{} . _T)xl(r)dr} =X, (5)X,(s) = X, ()X, (5)

0 0

Real shifting on the right in time domain (time delay)

6 L{x(t—a)}=e™ X(s)a>0

Real shifting on the left in time domain (lead)

; L{x(t+a)}:ea{x(s)—ix(t)eStdt}azo

0

Complex shifting in a complex domain

8 L{x(t)eia‘}: X(s+a)

Derivative in time domain

9 1-st order derivative L{ddx—gt)} =sX(s)-x(0)
n n i1
10 n-th order derivative L{dTXSt)} =s"X(s)-Ys"" d dt‘)i(l())
i=1

Derivative in a complex domain

1" L{tx(t)}=_d;<_s(5)
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Integral in time domain

t
12 L{j x(z)d r} :%X(S)
0
Integral value
13 [x(t)dt =lim X (s)
0 s—0
% . dX(s)
tx(t)dt = —lim———=
14 Jix(t)dt = lim =
Periodical function transform
15 L0+ x(t-a)+ xt—2a)+...} = X(5); i a— period, a>0
Initial value in time domain (if it exists)
16 x(O):tIirgl x(t)=lim sX(s)
Final value in time domain (if it exists)
17 X(e0) = lim x(t)= lim sX(s)
Mathematical operation with respect to an independent parameter
18 L{x(t,a)}= X(s,a)
19 L{lim x(t,a}}= lim X(s,a)
a—a, a—a

20 L{a’i((t, a)} _X(s,a)

a a

a, a,
21 L{jx(t,a)d a}: [X(s,a)da

ay ay

Inverse transform by residues
dit :
st I st
Zi:sress[x ] Z{ 1)|SI|%rrsl e [(s—si) X(s)e ]}

22

— the multiplicity of transform pole s;
n=>r, —the polynomial degree in the transform denominator
i
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Tab. A.2 Laplace transform - correspondences

Transform X(s) Original x(t)
1 s 5(t)
2 1 5(t)
1
— t
3 - n(t)
1 "
— =12
4 Snv n y &=y (n _1)!
5 > al[é'(t)—al e_alt], a, = 1
Ts+1 T,
6 ! a, e ™ a _1
Ts+1 o L,
1 —ayt 1
1-e, ==
! s(Ts+1) ° “aTT
1 1( o 1
e 1)+t =—
8 s2(T,s+1) 2 Ee-tq a T,
bs+1 ot 1
1 ~1)et, ==
d s(Ts+1) +agby ~1e AT
bs+1 ot 1 1
s A, Cll—e“)+t, C=b——, a=—
10 s2(T;s+1) -e )t c=n, o T,
S 2 —aqt 1
1-at)e ™, =—
11 (Ts+ 1)2 af (l-ogt) a, :
1 24 A—ayt 1
te !, ==
12 (T,s+1)° “ “ T,
1 1
1-(1+ayt)e™", =—
13 s(T,s +1) L+ at) “aTT
14 1 t_£+ E_i_t e_alt a _i
s?(T,s+1) o \o R
bs+1 o 1
15 (le +1)2 0‘12 [bl + (1_0‘1b1)t]e * o = T_l
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Transform X(s) Original x(t)
bs+1 —at 1
16 —_— 1-A+o(l-«o e, o =—
S(TIS i 1)2 [ 1( 1bl )t] 1 Tl
bs +1 t+C, —(C,-C,t)e ™"
17 BCYAUEAY)
s?(T,s+1) C1=b1—£, C,=1-ab, o =—
221 1
S "2 1
18 n=23, a' ——(n-1—gt)e ™™, o = —
(-1 T T
1 t"t 1
19 n:1!21 an—e_alt’ ol = —
(T,;s+1) ' (n-1) T
1 ot 1
20 n :1$21 1 e_a1t a o, = —
(T,s+1) ZO i Tt
1 n-1 . 1 1
21 n=12, t——+e ™ Yq i)— o =—
(Ts+1) o ZO =iy o T,
C,e-C,e” alzi, azzi
22 > T, =T E T
(Ts+1)T,s+1) 7 2 1 1
Ci=—— G =
Tl(TZ _Tl) TZ (TZ _Tl)
1 1 1 1
, =T Cle ™ —e ) C = L G =—, Ay =—
23 (Ts+1)T,s+1) * 2 l Je T-T, ~ T, T,
1+C,e ™ -C,e ™, a1=1, a, _1
24 L T, =T T T2
s(Tys+1)Ts+1) *° * c. i o _ T
1 ' 2
T,-T, T,-T,
1 t-C,+Ce ™ -C,e %, Cy=T,+T
25 , =T 2 2
s2(Ts+1)Ts+1) ' 2 C, = L C,= T2 a1=1, az=i
Tl_TZ Tl_TZ Tl T2
C,e'-C,e ", alzi a, :i
26 bs+1 TLT T, T,
(Tis+1)Ts+1) 7 2 o hh ol Toh
T(L-T,) T, -T,)

200




VITECEK, A., VITECKOVA, M. Closed-Loop Control of Mechatronic Systems

Transform X(s) Original x(t)
1+C,e ™ +Ce™ ™, o = i, a, = S
bs+1 T, T,
27 , =T,
s(T,s+1)T,s+1) C, - b,-T, C, = T, b
Tl _T2 Tl _T2
bs+1 T o1 t+Cy+Ce™+Coe ™™, Cy=-T,-T,+b
28 2 y 17 1 _ (bl _Tl)Tl _ (Tz _bJrz _1 _1
S (T18+1)(T23+1) Cl_ T2 —Tl ’ Cz— TZ —Tl ’ al—_l_la az—Tz
S n=223,... n n-3
29 | o U T _(iff St Ce =Ti
) k=L k=i
1 n=23,... n -2
30 | o\ T —different 2Ce™ G :“TI—’ “ :Tl
[1(Ts+1) 11— OHEEn ) [1(T-T) |
i1 k=1ki
1 n=223,... n -1
31 n ' T, —different -3, = & :Tl
s[I(Ts+1) 117 Oeren = 1T -T) |
i1 k=1kzi
t-C,+>.Ce ™, o _1
1 n=23,... i-1 T
32 n " T. —different " n
s'[I(Ts+1) C :n#, Co=3T,
fm-t)
k=1k=i
w
33 sin wt
s? + w?
34 > Cos wt
s+’
S ’ —Cle*ﬂsin(a)t—(o), Cl:—aﬂ_s, ;/:_gl_—o
35 T/s? +2£,T,s+1 1 0
0<¢, <1 =\1-&, v= arctg—
0
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Transform X(s) Original x(t)
1
36 T0252+2§0T05+1’ C,e"sinat, C1=i2' 7=é, 0)=i\/1—502
oT; T, To
0<&,<1
1 1-C,e " sin(wt + ), Clzi_l_, 7/:_9;_0
37 s(T2s? +2£,Tys+1) @l 0
1 > w
0<& <1 = L-g. p=artg
0
( 1 | t—C, +C e sin(wt +2¢), C,=2&,T2
38 s?(T2s? +2&,T,s +1) 1 & 1 o
C,=—y=22 w=—\1-&2, p=arctg—
0<& <1 =TT T, o @ S
bs+1 C,e " sin(wt + ), Clz%\/(l—Zbly)roﬂbf
39 T0252 +2&,ToS +1 £ n @l o,
=20 w=—\1-&, p=arctg—
0<&, <1 /4 T o T, Sor @ 91—701
bs+1 1+C,e"sin(wt — @), Clz%,/(l—Zbly)TOz+bf
) CU
40 S(TOZSZ +28,Tps +1) £ 1 i T2
=20 p="1/1-E2 @p=arct @lg
0<& <1 =g s l-& eardg o

b1, b, —the real constants, T;>0,i=0,1,...
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