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PREFACE 

The educational module the „Closed-loop Control of Mechatronic Systems“ is 

devoted to the bases of automatic control. The main emphasis is put on the principle of 

a negative feedback and its use in the control of mechatronic systems. It covers the most 

important area of analog automatic control and very briefly also describes digital 

control.  

Since the educational module is concerned with the basic concepts automatic 

control, any precise proofs in the module are therefore not given. For deepening and 

extending the study material the below mentioned references are recommended: 

DORF, R.C., BISHOP, R. Modern Control Systems. 12
th

 Edition. Prentice-Hall, 

Upper Saddle River, New Jersey 2011 

FRANKLIN, G.F., POWELL, J.D. – EMAMI-NAEINI, A. Feedback Control of Dynamic 

Systems. 4
th

 Edition. Prentice-Hall, Upper Saddle River, New Jersey, 2002 

LANDAU, I. D., ZITO, G. Digital Control Systems. Design, Identification and 

Implementation. Springer – Verlag, London, 2006 

NISE, N. S. Control Systems Engineering. 6
th

 Edition. John Wiley and Sons, 

Hoboken, New Jersey, 2011 

The authors give thanks to Mr Mark Landry for the English language correction. 

The textbook is determined for students who are interested in control engineering 

and mechatronics.  
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LIST OF BASIC NOTATIONS AND SYMBOLS 

a, ai, b, bi,… constants 

ai  coefficients of left side of differential equation, coefficients of transfer function 

denominator  

A, Ai, B, Bi constants, coefficients 

A() = modG(j) =G(j) frequency transfer function modulus, plot of A() = 

magnitude response 

Ao modulus of open-loop (control system) frequency transfer function  

AC modulus of controller frequency transfer function  

AP modulus of plant frequency transfer function  

Awy  modulus of closed-loop control system frequency transfer function 

A  system (dynamics) matrix of order  n [(n×n)] 

b set-point weight for proportional component (term) 

bi  coefficients of right side of differential equation, coefficients of transfer function 

nominator  

b  input state vector of dimension n 

c  set-point weight for derivative component (term) 

c  output state vector of dimension n 

C  capacitance 

d  transfer constant 

e  control error 

ev()  steady-state error caused by disturbance variable  

ew()  steady-state error caused by desired (reference) variable  

f  general function 





2
f  frequency 

g(t)  impulse response 

gP(t)   plant impulse response  

G(s)  transfer function, transform of impulse response  

)(e)()()()(  jAjQPjG    frequency transfer function, plot of G(j) = 

frequency response 

GF  filter transfer function  

Go  open-loop (control system) transfer function  

GC  controller transfer function 

GP  plant transfer function 
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Gvy  disturbance variable-to-controlled variable transfer function 

Gve  disturbance variable-to-control error transfer function 

Gwy  closed-loop (control system) transfer function 

Gwe  desired (reference) variable-to-control error transfer function 

h(t)  step response 

hP(t) plant step response  

hv(t) step response caused by disturbance variable  

hw(t) step response caused by desired (reference) variable 

Hi  Hurwitz determinants (subdeterminants, minors) 

H  Hurwitz matrix 

H(s)  transform of step response 

i  interacting coefficient, current 

Ii  integral criteria of control performance (i = IE, IAE, ISE, ITAE) 

1j   imaginary unit 

k  relative discrete time  

ki  gain  

kT  discrete time 

KD  weight of controller derivative component (term) 

KI weight of controller integral component (term) 

KP controller gain, weight of controller proportional component (term) 

KPc ultimate controller gain 

k  vector of state space controller 

L  inductance  

L operator of direct Laplace transform 

L
-1 

 operator of inverse Laplace transform  

L() = 20logA() logarithmic modulus of frequency transfer function  

Lo  logarithmic modulus of open-loop (control system) frequency transfer function  

LC logarithmic modulus of controller frequency transfer function  

Lwy  logarithmic modulus of closed-loop (control system) frequency transfer function  

l  Luenberger observer gain vector, correction vector  

m  degree of polynomial in transfer function nominator, motor torque, mass 

mA  gain margin 

ml  load torque 

mL = 20log mA  logarithmic gain margin  

M  polynomial in transfer function nominator (roots = zeros) 
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MS  maximum value of sensitivity function modulus  

n  degree of characteristic polynomial, degree of polynomial in transfer function 

denominator, dimension of state variable vector x  

N  characteristic polynomial or quasipolynomial, polynomial or quasipolynomial in 

transfer function denominator (roots = poles) 

N(j)  Mikhailov function (hodograph, characteristic) 

NP() = ReN(j) real part of Mikhailov function  

NQ() = ImN(j) imaginary part of Mikhailov function 

p number of controller adjustable parameters 

P() = ReG(j) real part of frequency transfer function  

pp  proportional band 

q  order of integral system, control system type 

Q() = ImG(j)  imaginary part of  frequency transfer function 

Qco controllability matrix of order n [(n×n)] 

Qob observability matrix of order n [(n×n)] 

r  order of derivative system  

R  resistance 

s =  + j complex variable, independent variable in Laplace transform  

si roots of polynomial with complex variable s  

S  complementary area over step response 

S(jω) sensitivity function 

t  (continuous) time 

tm  time of reaching value ym (peak value) 

tr  rise time 

ts  settling time 




 t  time corresponding to phase  



2
T  period  

T sampling period, period 

Td  time delay (dead time)  

TD  derivative time 

TI  integral time 

TIc  ultimate integral time 

Ti  (inertial) time constant  
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c

cT


2
   ultimate period 

Tn  substitute time constant 

Tp  transient time 

TΣ summary time constant 

Tu  substitute time delay (dead time) 

T(jω) complementary sensitivity function 

Tc, To transformation matrices of order n [(n×n)] 

u  manipulated variable, control variable, input variable (input), voltage 

uT  formed (stair case) manipulated variable 

v disturbance variable (disturbance) 

w  desired (reference, command) variable, set-point value 

x  state variable (state) 

x  state vector (state) of dimension n 

y  controlled (plant, process) variable, output variable (output) 

ym = y(tm)  maximum value of controlled variable (peak value) 

yv regulatory response 

yw servo response 

yT transient part of response 

yS steady-state part of response 

Z impedance 

 

 stability degree, coefficient in DMM, minimum segment slope 

 = Re s real part of the complex variable s  

 coefficient in DMM, maximum segment slope 

  phase margin 

  relative control tolerance 

(t)  unit Dirac impulse 

  difference, control tolerance 

(t) unit Heaviside step 

 = 2f  angular frequency, angular speed 

 = Im s  imaginary part of complex variable s 

b  cut-off angular frequency  

c

c
T




2
  ultimate angular frequency 
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g  gain crossover angular frequency 

p  phase crossover angular frequency 

R  resonant angular frequency 

0 natural angular frequency  

() = arg G(j) phase of frequency transfer function, plot of () = phase 

response 

o phase of open-loop (control system) transfer function  

i  relative damping 

  overshoot 

τj time constant  

 

Upper indices 

* recommended, optimal 

-1 inverse 

T transpose 

Symbols over letters 

. (total) derivative with respect to time 

 estimation 

Relation signs 

   approximately equal 

   after rounding equal 

̂   correspondence between original and transform 

 implication 

 equivalence 

Graphic marks 

  single zero 

  double zero 

  single pole 

 double pole 

 nonlinear system (element) 

  linear system (element) 

  single variable (signal) 

  multiple variable (signal), disrete (digital) variable (signal) 
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 summing node (filled segment expresses minus sign)

 

Shortcuts 

arg  argument 

dB decibel 

const  constant 

dec  decade 

det  determinant 

dim  dimension 

Im  imaginary, imaginary part 

lim limit 

max  maximum 

min  minimum 

mod  modulus 

Re  real, real part 

sign sign 

 

DMM desired model method 

DOF degree of freedom 

GGM good gain method 

MOM modulus optimum method (criterion) 

QDM quarter-decay method 

SIMC Skogestad internal model control 

SOM symmetrical optimum method (criterion) 

TLM Tyreus – Luyben method 

UEM universal experimental method 

ZNM Ziegler – Nichols method 
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1 INTRODUCTION TO CLOSED-LOOP CONTROL 

We meet control all the time. We can find control systems in every complex 

equipment or machine, which more often operate in a closed-loop. These systems are so 

common that we aren´t often conscious of their existence. For example, today´s 

compact cameras contains automatic focusing, automatic image stabilization, automatic 

white balancing, automatic aperture and shutter setting, automatic tracking of an object, 

etc. Home appliances such as radios and televisions, refrigerators, freezers, washing 

machines, dryers, microwave and electric ovens, deep fryers, electric irons, room 

thermostats, etc., also contain simple or more complex control systems. 

Control systems can be found in modern toys, such as remote controlled cars, 

boats, helicopters, planes, etc. Advanced control systems are present in today's means of 

transport, i.e. cars, boats, airplanes, and of course various military technology, 

equipment and weapons. 

Most of these systems can be included in a very broad group of mechatronic 

systems, which are characterized by the synergetic integration of the advantages and 

characteristics of various branches, such as mechanics, electromechanics, electronics, 

cybernetics, as well as technology and mechanical design. 

We will explain the control problem in an open-loop control and closed-loop 

control on a simplified example of the angular speed (rotational speed) control of a 

direct current (DC) motor with permanent magnets, see Figs 1.1 and 1.2, where:  ω(t) is 

the actual angular speed of the motor shaft [rad s
-1

], ωw(t) – the desired angular speed of 

the motor shaft [rad s
-1

], u(t) – the motor armature voltage [V], uw(t) = kωωw(t) – the 

output voltage of the setting device [V], uω(t) = kωω (t) – the output voltage of the 

tachogenerator [V], kω – the tachogenerator gain [V s rad
-1

], ml(t) – the load torque  

[N m]. 

 
Fig. 1.1 Open-loop speed control of a DC motor  

Setting 

device 
Control 

device 

Voltage 

source 
DC 

motor 

)(tw  )(t  

Actuator 
Plant 

)(tml  Open-loop 

controller 

controller 
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Fig. 1.2 Closed-loop speed control of a DC motor 

The setting device is often added to the control device and then both devices form 

the open-loop controller (Fig. 1.1) or the (closed-loop) controller (Fig. 1.2). 

The control objective consists in the fact  that at the actual angular speed of the 

motor shaft (plant, process) ω(t) at each time t was kept on (ideally equal to) the 

desired angular speed ωw(t) regardless of the varying load torque ml(t), i.e. 

)()( tt w  . (1.1a) 

It is obvious that the control objective (1.1a) can be expressed in the equivalent 

form  

0)()()(  ttte w  , (1.1b) 

where e(t) is the control error.  

In the open-loop control (Fig. 1.1) the controller must generate via the voltage 

source (actuator) such the armature voltage u(t) in order for the angular speed of the 

motor shaft ω(t) to approach the most the desired angular speed ωw(t). It follows from 

this that the DC motor properties must be very well known. Any inaccuracy in the 

knowledge of motor properties appears in angular speed ω(t). Also it is obvious that the 

controller cannot remove the influence of the load torque ml(t) on the angular speed 

ω(t). The load torque ml(t) causes the irremovable disturbance.  

For that reason the open-loop control can be only used for very simple control 

tasks.  

These simple open-loop control systems are e.g. in street traffic lights, washing 

machines, dryers, microwave and electric ovens, etc. The control task is set by the 

choice of preprogrammed operating modes. The open-loop controller contains simple 

and most often logical systems. 

In the closed-loop control (Fig. 1.2) the control error 

)()()()()()( tektktktutute wwu     (1.2) 

is created and the controller tries to remove it by generating the suitable armature 

voltage u(t) by means of a voltage source (actuator). 

Setting 

device 
Control 

device 

Voltage 

source 
DC 

motor 

)(tw  )(t  

Actuator 
Plant 

)(tml  
)(tu  Controller 

Tacho-

generator 
Feedback 

)(tuw  

)(tu  
Comparison 

device 

)()()( tutute wu   

Sensor  
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It does not matter if the control error (1.2) was caused by lack of motor behaviour 

or its change or by actuating the load torque ml(t). It is important that the contoller has 

such ability to always try as quickly as possible to minimize, preferably to completely 

remove the control error (1.2). 

The tachogenerator (sensor) in the feedback (Fig. 1.2) generates in its output the 

voltage 

)()( tktu    (1.3) 

and it is obvious that its dynamic behaviour would be negligible. The accuracy of the 

relation (1.3), therefore the accuracy of the tachogenerator (sensor) determines the 

resulting control accuracy. Control accuracy cannot be higher than sensor accuracy 

is.  

From the above mentioned it follows that the closed-loop control is much better 

than the open-loop control. That is why we will further deal with closed-loop control. 

Since the feedback rises in the control system in Fig. 1.2, the closed-loop control 

is called the feedback control or the regulation. It is clear that the feedback must be 

negative. 

The block diagram of the closed-loop control system, i.e. the feedback control 

system in Fig. 1.2 is substituted for purposes of its analysis and synthesis by the 

simplified diagram in Fig. 1.3. 

 

Fig. 1.3 Block diagram of the closed-loop control system  

 

The setting and control devices create the controller. The plant (in our case a DC 

motor) is controlled machinery or a process. The actuator and the sensor are often added 

to the plant. Sometimes these devices are added to the controller. It depends on the 

realization of all elements of the feedback control systems. 

Disturbance variables are aggregated to one or two disturbance variables, e.g. v(t) 

and v1(t). The desired (reference, command) variable is marked as w(t) and the 

controlled (process) variable as y(t). The controller output variable u(t) is called the 

manipulated (actuating, control) variable. 

The control objective for the control system in Fig. 1.3 can be expressed in the 

form 

)()( twty   (1.4a) 

or equivalently  

0)( te . (1.4b) 

Controller 

)(tw  )(tu  

)(tv  

)(ty  

)(1 tv  

)()()( tytwte   

Plant 
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From both relations two controller functions follow. The first function consists in 

the tracking of the desired variable w(t) by the controlled variable y(t) and the second 

one consists in the rejection of the negative influence of the disturbances v(t) and v1(t) 

on the control system operation. The first function is called the servo problem (set-

point tracking) and the second one is called the regulatory problem. 

The behaviour of open-loop and closed-loop control will be shown in two simple 

examples. 

Example 1.1 

It is necessary to analyse open-loop control (the open-loop control system) in Fig. 

1.4, where KP is the open-loop controller gain,  k1 – the plant gain. It is assumed that the 

plant gain k1  may change by ± Δk1. 

 

Fig. 1.4 Simple open-loop control system – Example 1.1  

Solution: 

For the open-loop control system it holds  

)()()( 1 tvtwkKty P  . (1.5) 

Consider the ideal control objective [see (1.4a)] 

)()( twty  . (1.6) 

and further two cases, when the disturbance v(t)  is not zero [v(t) ≠ 0] and it is zero 

[v(t) = 0]. 

a) v(t) = 0 

From equation (1.5) for the control objective (1.6) we get 

1

1

k
KP  . (1.7) 

It holds 

.)(1)(

)(()(

1

1

11

tw
k

k
ty

twkkKty P








 




 (1.8) 

We can see that the relative changes of the plant gain ±Δk1/k1   fully come out in 

the output variable y(t). 

For example, for the plant gain changes ±50 %, i.e. Δk1/k1 = ±0.5, on the basis of 

(1.8) we get 

)()5.01()( twty  .  

)(tw  )(tu  

)(tv  

)(ty  

PK  1k  

Open-loop 

controller 
Plant 
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b) v(t) ≠ 0 

For the open-loop controller gain KP (1.7) and the relative change of plant gain 

Δk1/k1  we obtain 

)()(1)(
1

1 tvtw
k

k
ty 







 
 . (1.9) 

We can see that in this case the disturbance variable v(t) fully comes out in the 

output variable y(t).  

For example, for the same plant gain changes like in the previous case, i.e. Δk1/k1 

= ±0.5 we get 

  )()(5.01)( tvtwty  .  

It is clear that the open-loop control (open-loop control system) can be used only 

in these cases when we perfectly know the plant behaviour and disturbances do not act 

on the plant or their influence is negligible.  

Example 1.2 

It is necessary to analyse closed-loop control (the closed-loop control system) in 

Fig. 1.5, where KP is the controller gain, k1 – the plant gain. It is assumed that the plant 

gain k1 may change by ± Δk1. 

 

Fig. 1.5 Simple closed-loop control system – Example 1.2  

Solution: 

For the closed-loop control system the relations hold 










)()()(

)()()( 1

tytwte

tvtekKty P
  

)(
1

1
)(

1
)(

11

1 tv
kK

tw
kK

kK
ty

PP

P





 . (1.10) 

In this case we can consider the plant gain changes ± Δk1 and the disturbance v(t) 

acting,  i.e. we can write  








 )(

)(1

1
)(

)(1

)(
)(

1111

11 tv
kkK

tw
kkK

kkK
ty

PP

P   

)(tw  
)(tu  

)(tv  

)(ty  
)(te  

PK  1k  

Controller Plant 
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)(

11

1
)(

1

1

1

1
)(

1

1
1

1

1
1

tv

k

k
kK

tw

k

k
kK

ty

P

P








 













 


 . (1.11) 

It is obvious that from (1.11) for  

PK    or   1kKP  (1.12) 

we obtain 

)()( twty  .  

We can see that for sufficiently high controller gain KP or the product KPk1 the 

control objective (1.4a) will hold. 

For example, for KPk1 = 100 and the plant gain changes ±50 %, i.e. ΔkP/kP = ±0.5 

we get 

 
 









 )(
5.011001

1
)(

1
5.01100

1

1
)( tvtwty   

)(0033.0
0097.00099.0)(0033.0

0097.09901.0)( tvtwty 




 






 

 .  

In this case the plant gain k1changes  ±50 % cause the change of the controlled 

variable y(t) less than 2 %  and the disturbance variable v(t) is supressed on a value less 

than 2 % of the original size. 

From the above mentioned it is obvious that the closed-loop control (the closed-

loop control system) is able to ensure high control performance for both functions, i.e. 

the tracking problem and regulatory problem as well. 

Example 1.3 

There is a closed-loop control system in Fig. 1.6, where two disturbance variables 

v(t) and v1(t)  act on the nonlinear plant which is described by the relation  

)()]()([)( 1 tvtvtufty  . (1.13) 

It is necessary to find out the behaviour of this control system for KP → ∞. 

 

Fig. 1.6 Closed-loop control system with nonlinear plant – Example 1.3  

Solution: 

For the control system in Fig. 1.6 we can write 

PK  

)(tw  )(tu  

)(tv  

)(ty  

)(1 tv  

)]()([ tvtuf   

Plant Controller 
)(te  
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












PK

tu
te

tytwte

)(
)(

)()()(

  

PK

tu
twty

)(
)()(  . (1.14) 

On the basis of (1.13) we can determine u(t), i.e. 

 )()()]()([ 1 tvtytvtuf  

  )]()([)()( 1
1 tvtyftvtu  

)()]()([)( 1
1 tvtvtyftu   . (1.15) 

After substituting (1.15) in (1.14) we get 

PK

tvtvtyf
twty

)()]()([
)()( 1

1 




. (1.16) 

It is obvious that for KP → ∞ we obtain 

)()( twty  .  

We can see that for the sufficiently high controller gain KP on the basis of the 

closed-loop control (feedback control) it is possible to fulfil the control objective (1.4a) 

for the nonlinear plant and for two mutually independent disturbance variables.  
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2 MATHEMATICAL MODELS OF DYNAMICAL 

SYSTEMS 

2.1 General mathematical models 

For the design and study of the properties of systems we use their mathematical 

models. It is very advantageous because experimentation with real systems may be 

substituted by experimentation with their mathematical models, i.e. by simulation. It 

enables considerable reductions in cost and risk of damage to the real system. It is also 

important for essentially accelerating the whole process. New nontraditional solutions 

often arise. 

In automatic control theory in the time domain, mathematical models have forms 

which are algebraic, transcendental, differential, partial differential, integral, difference, 

summation equations and their combinations. The mathematical model can be obtained 

by identification using an analytical or experimental method, if necessary by a 

combination of them. For example, a mathematical model can be obtained analytically 

and its parameters can be refined experimentally. Sometimes term identification means 

finding a mathematical model using an experimental method. We will only deal with 

such mathematical models that can be expressed in the forms of the t-invariant 

(stationary) ordinary differential equations, which describe real systems with lumped 

parameters. 

When evaluating a mathematical model and the simulation results we must always 

remember that every mathematical model is only an approximation of the real system. 

Since even a very complex MIMO (multi-input multi-output) system is formed by 

combining SISO (single-input single-output) systems, main attention will be paid to 

SISO systems. 

Consider the SISO system which is described by the generally nonlinear 

differential equation  

0)](),(,),(),(),(,),([ )()( tutututytytyg mn  . (2.1a) 
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with initial conditions 
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 (2.1c) 

where u(t) is the input variable (signal) = input, y(t) – the output variable (signal) = 

output, g – the generally nonlinear function, n – the system order. 

If the inequality 

mn   (2.2) 

holds, then the mathematical model satisfies a strong physical realizability condition.   
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In case 

mn   (2.3) 

it satisfies only a weak physical realizability condition.  

For 

mn   (2.4) 

the mathematical model is not physically realizable and therefore it does not express 

the behaviour of the real system.   

The mathematical model (2.1a), in which the derivatives appear (2.1b), describes 

the dynamic (dynamical) system (it has a memory). 

From the differential equation (2.1a) for 
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it is possible to obtain the equation (if it exists)  

)(ufy  , (2.5) 

where 
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tuu

tyy

t

t
 (2.6) 

The equation (2.5) expresses the static characteristic of the given dynamic 

system (2.1), see e.g. Fig. 2.1. 

 

Fig. 2.1 Nonlinear static characteristic – Example 2.1  

A static characteristic describes the dependency between output y and input u 

variables in a steady-state. 

If derivatives do not appear in Equation (2.1a), i.e., 

0)](),([ tutyg    or   0),( uyg , (2.7) 

then it is the mathematical model of the static system (it has not a memory). 

State space mathematical models of a dynamic system are very important. They 

are used for describing SISO systems and first of all MIMO systems. 
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The state space model of the SISO dynamic system has the form  

0)0()],(),([)( xxxgx  tutt    – state equation (2.8a) 

)](),([)( tuthty x                      – output equation (2.8b) 

,],...,,[ 21

2

1

T
n

n

xxx

x

x

x
























x  

,],...,,[ 21

2

1

T
n

n

ggg

g

g

g
























g  

where x(t) is the  state vector (state) of the dimension n, g – the generally nonlinear 

function of the dimension n, h – the generally nonlinear function, T – the transposition 

symbol.  

We often omit the independent variable time t in order to simplify a description.  

The components x1, x2,…, xn of the state x express the inner variables. Knowledge 

of them is very important for state space control (see Chapter 7). 

The system order n is given by the number of state variables. If in the output 

equation the input u(t) does not appear then the given dynamic system (2.8) is strongly 

physically realizable.  In other cases, it is only weakly physically realizable. 

The static characteristic (if it exists) from the state space model can be obtained 

for t → ∞ 0 )(tx  and by the elimination of the state variables (see example 2.1). 

Example 2.1 

The nonlinear dynamic system is described by the differential equation of the 

second order  

)()]([sign)(
d
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d

)(d
0012
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2 tutubtya
t

ty
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t

ty
a  , (2.9) 

with initial conditions 0)0( yy  a 0)0( yy   . 

It is necessary to: 

a) determine the physically realizability,  

b) determine and plot the static characteristic, 

c) express the mathematical model (2.9) in the form of the state space model.  

Solution:  

a) Therefore n = 2 > m = 0 [in the right side of the differential equation there does 

not appear the derivative of u(t)], the given dynamic system is strongly physically 

realizable.  
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b) In the steady-state for t → ∞ the derivatives in the equation (2.9) are zeros, and 

therefore in accordance with (2.6) we can write  
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The obtained static characteristic is shown in Fig. 2.1. 

c) If we choose the state variables, e.g. 
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then after substitution in the equation (2.9) and modification we get   
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The static characteristic can be obtained for the steady-state, i.e. t  

0)(1 tx , 0)(2 tx  and after elimination of the state variables  
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2.2 Linear dynamic systems  

Linear mathematical models create a very important group of mathematical 

models of dynamic systems. These mathematical models must satisfy the condition of 

the linearity which consists of two partial properties: additivity and homogeneity. 

Additivity 

2121
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system
yyuu

yu

yu
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. (2.10a) 

Homogeneity: 

ayauyu  systemsystem . (2.10b) 

These partial properties may be joined  
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where a, a1, a2 are any constants; u(t), u1(t) and u2(t) – the input variables (inputs); y(t), 

y1(t) and y2(t) – the output variables (outputs). 

The linearity of a dynamic system has such a property when the weighting sum 

of output variables corresponds to the weighting sum of input variables.  

A very important property of linear dynamic systems is: every local property they 

have is at the same time their global property. 

Example 2.2 

The static system is described by the linear algebraic equation  

01 )()( ytukty  , (2.12) 

where k1 and y0 are constants. 

Is it necessary to verify whether the mathematical model (2.12) is linear?  

Solution: 

We choose, e.g. u1(t) = 2 and u2(t) = 4t. 

After substitution in (2.12) we obtain 
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We can see that for y0 ≠ 0 the mathematical model (2.12) from the point of view 

of the linearity definition (2.10) or (2.11) is not linear. The mathematical model (2.12) 

of a static system will be linear only for  y0 = 0, see Fig. 2.2. 

 

Fig. 2.2 Mathematical model of a static system: a) nonlinear, b) linear – Example 2.2 

 

From the above it is clear that the static characteristic of linear systems (if it 

exists) must always pass through the origin of coordinates. 
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Example 2.3 

The dynamic system (integrator) is described by the linear differential equation  

01 )0(),(
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  (2.13) 

or the equivalent  integral equation  
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1 d)()( yukty
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It is necessary to verify the linearity of the given mathematical model.  

Solution: 

We choose the same inputs as in Example 2.2 and we obtain  
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Again we can see that the mathematical model (2.13) or (2.14) for y0 ≠ 0 does not 

satisfy the condition of the linearity (Fig. 2.3). 

 

Fig. 2.3 Mathematical model of integrator: a) nonlinear, b) linear – Example 2.3 

This particular conclusion can be generalized. For linear mathematical models 

we must always consider zero initial conditions. Otherwise, we cannot work with them 

as with mathematical models satisfying the conditions of linearity. 
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3 MATHEMATICAL MODELS OF LINEAR DYNAMIC 

SYSTEMS  

3.1 Basic linear mathematical models  

The SISO linear dynamic system in the time domain is very often described by a 

linear differential equation with constant coefficients (we will consider only such 

systems) 
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The conditions of physical realizability are given by the relations (2.2) − (2.4). 

Applying the Laplace transform (see Appendix A) to the differential equation of 

the n-th order (3.1a) with initial conditions (3.1b) we obtain the algebraic equation of 

the n-th degree  
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and from it we can  determine the output variable transform 
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where Y(s) is the transform of the output variable y(t), U(s) – the transform of the input 

variable u(t), L(s) – the polynomial of the max degree n – 1 which is determined by the 

initial conditions of the left side of the differential equation, R(s) – the polynomial of 

the max degree m – 1 which is determined by the initial conditions of the right side of 

the differential equation, M(s) – the polynomial of the degree m which is determined by 

the coefficients of the right side of the differential equation, N(s) – the characteristic 

polynomial of the degree n which is determined by the coefficients of the left side of 

the differential equation, s – the complex variable (dimension time
-1

) [s
-1

]. 

Since differential equation (3.1) is the mathematical model of the dynamic system 

it is obvious that the polynomial N(s) is also at the same time the characteristic 

polynomial of this dynamic system.  

Using the inverse Laplace transform  (see Appendix A) on the transform of the 

solution (3.2) we obtain the original of the solution 

 )(L)( 1 sYty  . (3.5) 
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It is very advantageous to use appropriate Laplace transform tables. The tables are 

suitable for automatic control theory and are given in Appendix A. 

From the relation (3.2) it follows that the relation can be used as the linear 

mathematical model of the given linear dynamic system if the transform of the response 

at the initial conditions is zero (i.e. the initial conditions are zero), see the conditions of 

the linearity (2.10) or (2.11).  In this case we can write  
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where G(s) is the transfer function, si – the poles of the linear dynamic system = the 

roots of the characteristic polynomial N(s), 0
js – the zeros of the linear dynamic system 

= the roots of the polynomial M(s). The difference n – m is called the relative degree of 

the given system.  

The transfer function G(s) is given by the ratio of the transform of the output 

variable Y(s) and of the transform of the input variable U(s) for zero initial 

conditions. It can be obtained directly from the differential equation (3.1a), because the 

transforms of the derivatives of the output y(t) and the input u(t) variables for zero 

initial conditions are given by the simple formulas 
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The great advantage of the transfer function G(s) is the fact that it allows to 

express the properties of the linear dynamic system in the complex variable domain by a 

block as in Fig. 3.1. 

 

Fig. 3.1 Block diagram of the dynamic system 

As it will be shown, it is very simple and effective to work with such blocks. 

We can get the static characteristic of the linear dynamic system (if it exists) from 

the differential equation (3.1a) for 
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0, 0

0

0
1  a
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k , (3.10b) 

where k1 is the system (plant) gain.   

From comparison (3.7), (3.9) and (3.10) a very important relationship between the 

time t and the complex variable s follows 

0 st . (3.11) 

It is clear that on the basis of the relation (3.11) we get the equation of the static 

characteristic (3.10) from the transfer function (3.7), and therefore it is possible to write 
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Fig. 3.2 Static characteristic of linear dynamic system  

The static characteristic of the linear dynamic system is a straight line which 

always crosses through the origin of the coordinates (Fig. 3.2). 

By substituting complex frequency jω for the complex variable s in the transfer 

function (3.7) we obtain the frequency transfer function 
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)(jarg)(  G , (3.15) 

where A(ω) is the modulus (amplitude, magnitude) of the frequency transfer function, 

φ(ω) – the argument or phase of the frequency transfer function, ω – the angular 

frequency (pulsation) (dimension time
-1

) [s
-1

]. 

In order to distinguish angular frequency (T – the period, f – the frequency) 
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from „ordinary“ frequency 

T
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with the unit [Hz] and the  dimension [s
-1

] for the angular frequency the notation  

[rad s
-1

] is used.   
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The mapping of the frequency transfer function G(jω) for ω = 0 to ω = ∞ in the 

complex plane is called the frequency response (polar plot) (Fig. 3.3). 

 

Fig. 3.3 Frequency response 

 

Fig. 3.4 Logarithmic frequency responses: a) Bode magnitude plot, b) Bode phase plot 

Logarithmic frequency responses (Bode frequency responses) are most 

commonly used, see Fig. 3.4. In this case the Bode magnitude plot  
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)(log20)(  AL   (3.18) 

and the Bode phase plot φ(ω) are represented separately. The frequency axis has a 

logarithmic scale and the logarithmic modulus L(ω) is given in dB (decibels). For the 

Bode plots approximations are used on the basis of straight and asymptotic lines. 

The frequency transfer function G(jω) expresses for each value of the angular 

frequency ω the amplitude (modulus, magnitude) A(ω) and the phase (argument) φ(ω) 

of the steady-state sinusoidal response y(t) caused by the sinusoidal input u(t) with the 

unit amplitude. 

That means the frequency response can be obtained experimentally (Fig. 3.5). It 

has great significance especially for fast systems.  

 

 

Fig. 3.5 Interpretation of frequency response  

The conditions of the physical realizability are given by the relations (2.2) – (2.4). 

It is obvious that every real dynamic system cannot transfer a signal with an infinitely 

high angular frequency, therefore for strongly physically realizable dynamic systems 
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From the frequency transfer function (3.13) we can very easily get the equation of 

the static characteristic (if it exists) because for the steady-state ω = 0 therefore it must 

hold 
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It follows from (3.11) for s = jω 

0 t . (3.21) 

It is clear that between the time t and the angular frequency ω the dual 

relationship holds (Fig. 3.6) 

 0t . (3.22) 

 

 

Fig. 3.6 Relationship between the time t and the angular frequency ω  

 

From the relations (3.21), (3.22) and Fig. 3.6 it follows that the properties of the 

linear dynamic system for low angular frequencies decide about its properties in long 

periods, i.e. in the steady-states and vice versa. Similarly its properties for high angular 

frequencies decide about its properties for the initial time response, i.e. about the rise 

time of the time response (about the transient state) and vice versa. 

Properties of linear dynamic systems with zero initial conditions can be expressed 

by time responses caused by the well-defined courses of an input variable. 

In automatic control theory, there are two basic courses of input variable u(t), they 

are the unit Dirac impulse δ(t) and unit Heaviside step η(t), see Appendix A. 

The impulse response g(t) describes the response of the linear dynamic system on 

the input variable in the form of the Dirac impulse δ(t) for zero initial condition, see Fig. 

3.7. 

In accordance with the relation (3.6) we can write  
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and for 
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Fig. 3.7 Impulse response of the linear dynamic system  

In the linear dynamic system a derivative or an integrating of the input variable 

u(t) corresponds to a derivative or an integrating of the output variable y(t). 

We will use these properties for the determination of the static characteristic of 

the linear dynamic system on the basis of its impulse response g(t). Since the static 

characteristic of the linear dynamic system is a straight line crossing through the origin 

of the coordinates it is enough to determine its one non-zero point. We can write  
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From this we can easily get the equation of the static characteristic (if it exists)  
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  . (3.25) 

The strong condition of the physical realizability has the form 

)0(g . (3.26) 

If g(0) contains the Dirac impulse δ(t), then the given linear dynamic system is 

only weakly physically realizable.  

The step response h(t) describes the response of the linear dynamic system on the 

input variable in the form of the Heaviside step η(t) for zero initial condition, see Fig. 

3.8. 

On the basis of the relation (3.23) for 
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Fig. 3.8 Step response of the linear dynamic system 

we get 
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From the step response h(t) the equation of the static characteristic may be very 

easily obtained (if it exists) because the relations hold   
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The strong condition of the physical realizability has the form  

0)0( h  (3.29) 

and the weak condition 

 )0(0 h . (3.30) 

It is useful to apply the generalized derivative which is defined by the relations 

(Fig. 3.9) 
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 (3.31) 

where ti are the points of discontinuity with the jumps hi, )(txor
  − the ordinary 

derivative determined between the points of discontinuity.  
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Fig. 3.9 Function x(t) with points of discontinuity  

By means of the generalized derivative it is possible to express the relationship 

between the Dirac impulse and the Heaviside step 


t

dt
t

t
t

0
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d

)(d
)( 


  (3.32) 

and between the impulse and step responses   
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s
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)()()(  . (3.34) 

From all mathematical models of the linear dynamic systems the state space 

model is the most general 

0)0(),()()( xxbAxx  tutt    − state equation (3.35a) 

)()()( tdutty T  xc                     − output equation (3.35b) 

where A is the square system (dynamics) matrix of the order n [(n×n)], b – the vector of 

the input of the dimension n, c – the vector of the output of the dimension n, d – the 

transfer constant, T – the transposition symbol. 

The block diagram of the state space model of the linear dynamic system (3.35) is 

in Fig. 3.10. 

For d = 0 the state space model (3.35) satisfies the strong condition of the physical 

realizability and for d ≠ 0 satisfies only the weak condition of physical realizability.  
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Fig. 3.10 Block diagram of the state space model of the linear dynamic system 

If the state space model (3.35) satisfies the controllability condition  

0],[det],,,,[),( 1  
bAQbAAbbbAQ co

n
co   (3.36) 

and the observability condition 

0],[det,])(,,,[),( 1   T
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TnTT
ob cAQcAcAccAQ  , (3.37) 

then for zero initial conditions [x(0) = x0 = 0] we can get the transfer function on the 

basis of the Laplace transform 
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where det is the determinant, I – the unit matrix, Qco – the controllability matrix of 

order n [(n×n)], Qob – the observability matrix of order n [(n×n)]. 

From the transfer function (3.38) on the basis of (3.12) we can obtain the equation 

of the static characteristic (if it exists) 
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It is preferable for getting the transfer function to use the relation  
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which does not demand the inversion of the functional matrix.  

The controllability condition (3.36) expresses a very important property of the 

given linear dynamic system consisting in fact that there is such an input variable 

(control) u(t) which can transfer the system from any initial state to any other state in a 

finite time. 

The observability condition (3.37) expresses the fact that on the basis of the 

courses of the input variable (control) u(t) and the output variable y(t) at the given time 

interval it is possible to determine  state x(t) in any time from this interval. 
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Transfer function (3.38) or (3.39) are determined on the basis of the state space 

model (3.35) uniquely. In contrast to the transfer function 
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the state space model can have many (theoretically infinitely many) different forms. For 

example, for n = m the transfer function (3.41a) can be written down in the form  
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From such a modified transfer function as (3.41b) we can directly express the 

state space model (3.35) in the canonical controller form, where 
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 (3.42) 

The modified transfer function (3.41b) was obtained from the transfer function 

(3.41a) by dividing the nominator by the denominator and the residue by the 

coefficient na . 

The coefficients ai and bi can be obtained directly on the basis of the formulas  
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For the state space model in the canonical controller form (3.42) the dual 

canonical observer form exists  
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canonical controller form              canonical observer form 
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Transfer constant d remains the same in all forms of the state space models.  

Both matrices cA  and T
co AA   in both state space models (3.44) have the 

Frobenius canonical form characterized in that the first or the last row, or the first or 

the last column contains the negative coefficients of the characteristic polynomial N(s) 

for an = 1.  Their characteristic polynomials are the same  

),())((

)det()det()det()(

2101
1

1 n
n

n
n

oc

ssssssasasas

ssssN






 

AIAIAI
 (3.46) 

where si are the eigenvalues  which are the same for matrices  A, cA  and T
co AA  . 

From a comparison of the denominators in the transfer functions (3.40) and (3.41) 

and the polynomial (3.46) it follows that the roots of the characteristic polynomials are 

the eigenvalues of the matrices A, Ac and Ao, and therefore they are also the poles of the 

linear dynamic system. 

We can obtain the canonical state space models (3.44) from the general state 

space model (3.35) on the basis of the transformation matrices Tc and To 

QbAQT ),(coc  , (3.47) 
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is made up from the coefficients of the characteristic polynomial N(s) for an = 1, except 

the coefficient a0, see also relation (3.41b). Then we can write 

canonical controller form 
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canonical observer form 
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Vectors bo and cc are created by the coefficients bi of the nominator in the relation 

(3.41) and they can be determined directly on the basis of the formulas (3.43). 

From the above mentioned mathematical models the state space model is the most 

general. Assuming controllability and observability [see relations (3.36) and (3.37)] 

and, of course, zero initial conditions, all these mathematical models of the linear 

dynamical systems, i.e., linear differential equations, transfer functions, frequency 

transfer functions, impulse responses, step responses and linear state space models are 

equivalent and mutually transferable. 
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For this reason, for the analysis and synthesis of control systems there should 

always be used such a mathematical model that is the most suitable for a given purpose. 

3.2 Classification of linear dynamic systems 

Linear dynamic systems can be classified according to various criteria. In this text 

the classification of linear dynamic systems is done on the basis of their properties for 

t  ∞, or for  ω  0 [see (3.21)]. 

Linear dynamic systems can be classified on proportional, derivative and 

integrating systems (Fig. 3.11). 

 

Fig. 3.11 Basic classification of linear dynamic systems  

For proportional, derivative and integral linear dynamic systems the static 

characteristics (Fig. 3.12a), the step responses for t  ∞ (Fig. 3.12b), the frequency 

responses  for ω  0 (Fig. 3.12c) and the Bode magnitude plots for ω  0 (Fig. 3.12d) 

are shown in Figure 3.12.  

Proportional systems 

The general transfer function of a proportional system of the n-th order with time 

delay (Td > 0) has the form  
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where Td is time delay (dead time), n – the system order. 

The polynomial ans
n
 + … + a1s + a0 has all roots in the left half plane of the 

complex plane s [this assumption holds also in relations (3.57) and (3.58)]. The general 

properties of proportional systems in the time and the frequency domains are shown in 

Fig. 3.12 (on the left).  

The transfer function of the time delay is represented by the transcendental 

function  
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e . (3.53) 

It is often approximated by the algebraic functions, e.g.  
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          Proportional                              Derivative                              Integrating 

 

 

 

 

Fig. 3.12 Linear dynamic systems: a) static characteristics, b) step responses, c) 

frequency responses, d) Bode magnitude plots 
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For approximation  

xx  1e  (3.56) 

Taylor’s expansion was used.  

The approximation of the time delay (3.55) is also called the Padé expansion of 

the first order.  

The time delay (3.53) in the time domain makes for shifting on the right of the 

time response without any changes to its shape (Fig. 3.13a). 

In the frequency domain the time delay (3.53) does not affect a modulus. It 

increases a negative phase therefore the frequency response creates the endless spiral 

around the origin (Fig. 3.13b). 

a)  

 
b) 

 

Fig. 3.13 Influence of time delay on: a) time response, b) frequency response  
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Derivative systems 

The general transfer function of a derivative system of the r-th order with time 

delay (Td > 0) has the form  
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The general properties of derivative systems in the time and frequency domains 

are shown in Fig. 3.12 (in the middle).  

Integrating systems 

The general transfer function of an integrating system of the q-th order with time 

delay (Td > 0) has the form  
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The total order of the integrating system (3.58) is n + q. 

The general properties of integrating systems in the time and frequency domains 

are shown in Fig. 3.12 (on the right).  

Example 3.1 

A mathematical model of the linear dynamic system has the form of the linear 

differential equation with constant coefficients  
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d
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t

ty
T  , (3.59) 

where T1 is the time constant [s], Td – the time delay [s], k1 – the system gain [-]. 

It is necessary to express the given mathematical model in the forms of the 

transfer function, the frequency transfer function, the impulse response, the step 

response and the state space model. On the basis of all models it is necessary to 

determine the physical realizability and the static characteristic.   

Solution: 

Differential equation 

The mathematical model is already in the form of the linear differential equations. 

It shows that n = 1 > m = 0, i.e. the relative degree is equal to one, and therefore 

the dynamic system is strongly physically realizable. 

From the differential equation (3.59) for t  ∞ we can get the equation of the 

static characteristic [see (3.2)] 

uky 1 . (3.60) 

Transfer function 

By means of the Laplace transform for zero initial condition from the differential 

equation (3.59) we get [see (3.8)] 
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Because n = 1 > m = 0, the given linear dynamic system is strongly physically 

realizable. 

The static characteristic can be obtained on the basis of (3.12) 

ukyusGy
s

1
0

)](lim[ 


.  

Frequency transfer function 

The frequency transfer function can be easily obtained [see (3.13)] 
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, (3.62a) 

)(jarg)(),(jmod)(  GGA  . (3.62b) 

We divide the frequency transfer function (3.62) into two parts   
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 j
22 earg)(jarg)( . (3.65b) 

Relations  (3.64) and (3.65) were obtained on the basis of known formulas for 

complex numbers  

22

1

)jmod(

1

j

1
mod

bababa 



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
, (3.66a) 

a

b
ba

ba
arctan)jarg(

j

1
arg 


 (3.66b) 

and the Euler formula 

xxx sinjcose j  . (3.67) 

Then for frequency transfer function (3.62) the relations hold 



VÍTEČEK, A., VÍTEČKOVÁ, M. Closed-Loop Control of Mechatronic Systems 

 

42 

2
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 , (3.68a) 

 dTT  121 arctan)()()( . (3.68b) 

From the relations (3.64), (3.65) and (3.68) it follows that the time delay has no 

effect on the modulus (the modulus of the time delay is equal to one), but significantly 

increases the negative phase. 

Just an endless growth of a negative phase causes the creation of the endless spiral 

at the frequency response, see Fig. 3.13b.  

Impulse response 

The impulse response g(t) is the original of the transfer function G(s). Since the 

transfer function (3.61) contains the time delay, it is suitable to write it down in the 

form (similarly to the frequency transfer function)  


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 (3.69) 

and to find the impulse response g1(t), i.e. the original of the transfer function G1(s) 

which do not contain the time delay (see Appendix A) 
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Fig. 3.14 Time responses: a) impulse, b) step – Example 3.1 

dT  1TTd   t  0  

 )(L
d

)(d
)( 1 sG

t

th
tg   

1

1

T

k
 

)(ty  





0

1 )(d)( httgk  

a) 

dT  1TTd   t  0  









 


s

sG
gth

t )(
Ld)()( 1

0

  

1)( kh   

)(ty  b) 



VÍTEČEK, A., VÍTEČKOVÁ, M. Closed-Loop Control of Mechatronic Systems 

 

43 

The resulting impulse response will be delayed by Td, and therefore we can write 

(Fig. 3.14a) 
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k
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
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 . (3.71) 

We must use the delayed Heaviside step η(t – Td), because it ensures  

0)( tg    for   dTt  . (3.72) 

At time t = Td, i.e. at the beginning of the input u(t) acting at impulse response g(t) 

does not contain the Dirac impulse δ(t – Td), and therefore the linear dynamic system is 

strongly physically realizable (Fig. 3.14a). 

The static characteristic can be determined on the basis of the relation (3.25). In 

accordance with (3.25) we can write  
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Step response 

Similarly for the impulse response we use the relations (3.69) and in accordance 

with the formula (3.27) for part of the transfer function without time delay and we get 
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The resulting step response h(t) will be delayed by Td, and therefore we can write 

(Figs 3.13a and  3.14b) 
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The delayed Heaviside step η(t – Td) ensures 

0)( th    for   dTt  . (3.75) 

At time t = Td, i.e. at the beginning of the input u(t) acting the step response h(t) 

equals zero and therefore the linear dynamic system is strongly physically realizable. 

For determining the static characteristic the relation (3.28) is used 
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We easily make sure that the relation (Fig. 3.14) holds 
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State space model 

Since the linear differential equation (3.59) is very simple, e.g for x(t) = y(t) we 

can directly write 
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 (3.76) 

where x(t) is the state. 

It is obvious that the form (3.76) is only one of many possible equivalent forms of 

a state space model. 

For the state space model (3.76)  d = 0, and therefore the linear dynamic system is 

strongly physically realizable. 

The static characteristic can be obtained on the basis of the state space model 

(3.76) 
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It is evident from all the above mentioned mathematical models that it is the 

proportional system of the first order with a time delay (see Fig. 12.3). 

For this system the following abbreviations are often used: FOPTD system (first 

order plus time delay system), FOPDT system (first order plus dead time system) and 

FOLPD system (first order lag plus time delay system). 

The FOPTD system is very important for automatic control theory because it is 

very often used for the approximation of nonoscillatory plants of high order. 

Example 3.2 

It is necessary to express a resistance, an inductance and a capacitance in the form 

of impedance transforms and transfer functions (Fig. 3.15). In Fig. 3.15 there are: u(t) – 

the voltage [V], i(t) – the current [A], R – the resistance [Ω], L – the inductance [H], C – 

the capacitance [F]. 

 

Fig. 3.15 – Passive electrical elements: a) resistor, b) inductor, c) capacitor 
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Solution: 

In order to determine the impedance transform Z(s) we use the generalized Ohm's 

Law 


)(

)(
)(

sZ

sU
sI   

,
)(

)(
)(

sI

sU
sZ   (3.77) 

where U(s) is the voltage transform, I(s) – the current transform.  

The transfer function of the passive electrical element with the impedance 

transform Z(s) depends on if the input is the current I(s) or the voltage U(s), see Fig. 

3.16. 

 

Fig. 3.16 Transfer function of the passive electrical element: a) input = current,  

b) input = voltage 

a) Resistor 

For a resistor with the resistance R it holds 

)()( tRitu  .  

Using the Laplace transform we get 
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.
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sZ   (3.78) 

The resistor with the resistance R has the property of the ideal proportional system 

for current or voltage inputs (Fig. 3.17a).  

b) Inductor 

For an inductor with the inductance L it holds  
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Applying the Laplace transform with the zero initial condition we get 
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The inductor with the inductance L has the property of the ideal derivative system 

for the current input and the property of the ideal integrating system for the voltage 

input (Fig. 3.17b).  

c) Capacitor 

For a capacitor with capacitance C it holds 

t

tu
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C
tu
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d

)(d
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1
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   .  

Applying the Laplace transform with the zero initial condition we get 
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sU
sZ   (3.80) 

The capacitor with capacitance C has the property of the ideal system for the 

current input and the property of the ideal derivative system for the voltage input (Fig. 

3.17c).  

 

Fig. 3.17 Transfer functions of passive electrical elements: a) resistor, b) inductor, 

 c) capacitor 

3.3 Block diagram algebra 

Block diagrams have been used in the previous chapters. Now we show that the 

block diagrams representing complex systems can be easily simplified by using block 

diagram algebra. 
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The system (subsystem, element, etc.) is expressed in block diagrams by the block 

containing its transfer function. Addition and subtraction (comparison) of the variables 

(signals) are expressed by the summing node and variables (signals) branching is 

expressed by the information node (Fig. 3.18). 

U s( )
G s( )

Y s( )

a) b)
U s1( )

U s2( )

U s3( )

Y s( ) Y s( )

c) Y s( )

Y s( )

Y s( )

 
)()()( sUsGsY                    )()()()( 321 sUsUsUsY    

Fig. 3.18 Representation: a) linear dynamic system by block, b) addition and subtraction 

by the summing node, c) branching by the information node  

The filled segment of the summation node or minus sign means subtraction of the 

corresponding variable (signal). From the summation node only one variable can come 

out. For the reason of simplicity and clarity the independent variable s is not often 

explicitly written in transfer functions and transforms in the block diagrams.   

 

 

 

Fig. 3.19 Interconnection of blocks: a) serial, b) parallel, c) feedback 
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For the serial (cascade) interconnection in Fig. 3.19a it holds  
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For the serial interconnection of the blocks the resultant transfer function is the 

product of the particular transfer functions (it does not depend on the order). 

For the parallel interconnection in Fig. 3.19b it holds   
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Tab. 3.1 Basic block diagram transformations  

Moving an information node ahead of a block 
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Moving an information node behind a block 
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Moving a summing node behind a block 
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Moving a block from a parallel interconnection 
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Moving a block from a feedback interconnection 
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For the parallel interconnection of the blocks the resultant transfer function is the 

sum of the particular transfer functions taking into account the signs at the summing 

node. 

For the feedback interconnection in Fig. 3.19c it holds   
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. (3.83) 

For the feedback interconnection the resultant transfer function is given by the 

transfer function in the forward path (branch) divided by the negative (in case of 

positive feedback), or the positive (in the case of negative feedback) product of the 

transfer functions in the forward and feedback paths (branches) increased by one. The 

transfer function of the path without the block (transfer function) is considered as a unit. 

With knowledge of the three basic interconnections and simple modification of 

the block diagrams, which are shown in Tab. 3.1, we can easily simplify any even very 

complex block diagram. 

If the block diagram contains multiple input and output variables, then for each 

output variable all the input variables are considered, the variables which are not 

considered are assumed equal to zero (they are not drawn).  The resulting transfer 

functions for each input variable are given by the sum of the effects of the all input 

variables (it is based on the linearity). For reasons of clarity, the resulting transfer 

function often uses a subscript, the first letter indicates the input variable and the second 

letter indicates the output variable (sometimes the opposite order is used). 

Example 3.3 

The simple electrical circuit with the passive electrical elements with the 

impedance transforms Z1(s) and Z2(s) is shown in Fig. 3.20. It is necessary to determine 

its transfer function assuming that the voltage u1(t) [V] is the input and the voltage u2(t) 

[V] is the output.    

Solution: 

We determine the transfer function of the electrical circuit in Fig. 3.20a in three 

ways.  

a) Classical approach 

Since for both impedances the current i(t)  is the same, therefore we can write 
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b) Voltage divider 

The circuit in Fig. 3.20a can be regarded as a voltage divider in Fig. 3.20b. For a 

voltage divider it holds  
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c) 

  

Fig. 3.20 Simple electrical circuit with passive elements: a) scheme, b) voltage divider, 

c) feedback circuit – Example 3.3 

c) Feedback circuit 

The electrical circuit in Fig. 3.20a can also be considered as the feedback circuit 

in Fig. 3.20c. In accordance with the relations (3.81) and (3.83) we can directly write 
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Example 3.4 

An operational amplifier (op-amp) is a very important active element that has 

wide application in mechatronics. In electronics and electrical engineering it is available 

as an integrated circuit. It is an amplifier with a high gain (theoretically infinitely high) 

and a large input resistance (theoretically infinitely large), which works with negative 

feedback (Fig. 3.21). By the appropriate choice of the feedback impedance Z2(s) and the 

impedance Z1(s) in the input the operational amplifier can realize various dynamic 

properties. The power supply for operational amplifiers is not drawn and its simplified 

scheme is used (Fig. 3.21b). 

It is necessary to derive the transfer function of the operational amplifier. 
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Fig. 3.21 Operational amplifier: a) scheme, b) simplified scheme – Example 3.4 

Solution: 

Since the amplification and the input resistance of the operational amplifier are 

very high, it is obvious that any current cannot flow in it, i.e. it must hold 
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Example 3.5 

For all circuits with the operational amplifier in Fig. 3.22 it is necessary to 

determine their transfer functions. 

Solution: 

For a determination of the transfer functions of the electrical circuits with an 

operational amplifier in Fig. 3.22 we will use the derived formula (3.85) in Example 

3.4, i.e. 
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Assuming that the resistance is in [Ω] and the capacitance is in [F], the product of 

the resistance and capacitance is in [s]. 
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sG  . (3.86) 

It is the ideal proportional system (ideal amplifier) – P. 

b) 

RCs
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R
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sG 

1)(

)(
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1

2 . (3.87) 

It is the ideal derivative system – D. 
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Z2(s) 

a) b) 

U1(s) U2(s) 
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+ 

− 
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Fig. 3.22 Electrical circuits with an operational amplifier – Example 3.5 
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It is the ideal integrating system – I. 
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It is the proportional system of the first order  
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This electrical circuit with the operational amplifier realizes the PI controller (for 

more details see Section 5.1). 
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It is the derivative system of the first order (the real derivative system). 
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This electrical circuit with the operational amplifier realizes the PID controller 

with interaction (for more details see Section 5.1). 
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This electrical circuit with the operational amplifier realizes the lead-lag 

compensator. It improves an undesirable frequency response.  

Example 3.6 

It is necessary to derive a mathematical model of a DC motor with a constant 

separate excitation (furthermore, we will use “DC motor”) in Fig. 3.23, where means: 

Jm – the total moment of inertia reduced in the motor shaft [kg m
2
], ia(t) – the armature 

current [A], ua(t) – the armature voltage [V], Ra - the total resistance of the armature 

circuit [Ω], La – the total inductance of the armature circuit [H], bm – the coefficient of 

viscous friction [N m s rad
-1

], m(t) - the motor torque [N m], ml(t) – the load torque  

[N m], α(t) – the angle of the motor shaft [rad], ω(t) – the angular velocity of the motor 

shaft [rad s
-1

], cm – the motor constant [N m A
-1

], ce – the motor constant [V s rad
-1

], 

ue(t) – the induced voltage [V], Φ – the constant magnetic flux of the excitation [Wb ]. 

 

Fig. 3.23 Simplified scheme of the DC motor – Example 3.6  

Solution: 

In accordance with Fig. 3.23 we can write [3, 16, 21]: 


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 (3.94) 

Applying the Laplace transform with zero initial conditions and after modification 

we get 

)(tua  

)(tia  
aR  aL  

mb  
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em cc ,  
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).()(
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Now we can easily make up a block diagram corresponding to the above 

equations (Fig. 3.24). 

On the basis of the block diagram in Fig. 3.24 we can easily obtain the transfer 

functions: 

 

Fig. 3.24 Bock diagram of DC motor – Example 3.6  
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Angle of the motor shaft 
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For powers in steady-state equality holds  

.meamaeae ccicicmiu    (3.99) 

The state space model of the DC motor can be easily obtained from the equations 

(3.94) 
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The equations (3.100) can be written down in the matrix form  
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 (3.101) 
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4 MATHEMATICAL MODEL SIMPLIFICATION 

4.1 Linearization 

Linear dynamical systems are in principle the idealization of real dynamic 

systems. The real world is nonlinear, and therefore, if we want to use linear models, we 

have to agree to various simplifying assumptions. One of the most important 

assumptions is that the system operates in the "close" neighbourhood of the operating 

point. In this neighbourhood the mathematical model of the dynamic system can be 

considered as linear. 

Assume that a nonlinear dynamical system is described by the differential 

equation (2.1a) 

0)](),(,),(),(),(,),([ )()( tutututytytyg mn  .  

Using the Taylor expansion and we will consider only linear terms due to 

increments and we get 
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After modification we obtain the linearized differential equation  
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where 
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 (4.3) 

The partial derivatives in equations (4.2) and (4.3) should be calculated for the 

operating point (u0, y0) which lies on the static characteristics [see (2.5)] 

)(ufy  ,  

i.e. 

)( 00 ufy  . (4.4) 

The linearized static characteristic has the form  

)()( 1 tukty   or  uky  1 , (4.5) 
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where the coefficient k1 can be determined on the basis of the relations (4.2) and (4.3) 
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y

g
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The geometric interpretation of the linearization of the nonlinear static 

characteristic is shown in Fig. 4.1. We can see that it is a tangent line at the operating 

point to the original nonlinear static characteristics. 

 

 

Fig. 4.1 Geometric interpretation of linearization of nonlinear static characteristic 

From comparison of the equations (4.1) and (3.1a) it follows that they have the 

same form, but the input and output variables are represented by their increments and 

coefficients (4.2) and (4.3) depend on the operating point (u0, y0). 

After linearization the linearized static characteristic (4.5) must pass through the 

origin of the incremental coordinates (Fig. 4.1). 

The output variable can be approximately expressed by the relation  

)()(ˆ 0 tyyty  , (4.7) 

where )(ˆ ty  is the output variable obtained from the linearized mathematical model.  

Now consider the mathematical model of the nonlinear static system with one 

output variable y and m input variables u1, u2,…, um. 

),,,( 21 muuufy  . (4.8) 

As in the previous case, we use the Taylor expansion and the linearized 

mathematical model is determined by the tangent hyperplane 
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When the mathematical model of nonlinear dynamic systems is in the state space 

representation (2.8) 

)],(),([)( tutt xgx    

)](),([)( tuthty x , 

then the linearization proceeds similarly. The Taylor expansion is used and the linear 

terms with respect to increments are considered only, i.e. 
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 (4.10b) 

In all cases it is assumed that the partial derivatives (4.2), (4.3), (4.9b) and (4.10) 

exist and are continuous. 

The transition from the incremental variables to the absolute variables is given by 

relations 


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
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0
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tyyty
 (4.11) 

Throughout the whole text, if not expressed otherwise, all transfer functions are 

considered at the operating point, i.e. it is worked with incremental variables, although 

it is not explicitly stated and variables are not referred to as incremental. 

Example 4.1 

It is necessary to derive a simplified mathematical model of the hydraulic double 

acting linear motor with the spool control valve (the valve for continuous flow control) 

and to perform the linearization (Fig. 4.2). It is assumed that the compressibility of the 

hydraulic fluid is negligible, the pressure loss in the source pipelines and the leakage are 

negligible as well. The control valve is described by the nonlinear equation of the static 

characteristic in the form (pz = const.) 

)](),([)( 1 tpptzqtq z  . (4.12) 

In Fig. 4.2 it means: m – the total mass (piston + piston rod + load) [kg], z1(t) – 

the input spool displacement [m], z2(t) – the output piston displacement [m], p(t) – the 

pressure in the working space [Pa], pz – the source pressure [Pa], A – the area of the 

piston (the same for both sides) [m
2
], b – the coefficient of viscous friction [kg s

-1
], q(t) 

– the volumetric flow rate [m
3
 s

-1
], f(t) – the external force [N]. 



VÍTEČEK, A., VÍTEČKOVÁ, M. Closed-Loop Control of Mechatronic Systems 

 

60 

 

Fig. 4.2 Simplified scheme of hydraulic double acting linear motor with spool control 

valve – Example 4.1 

Solution: 

Under the above simplifying assumptions, we can write [3, 16]: 

force balance  
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volumetric flow rate balance 
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control valve static characteristic 

)](),([)( 1 tpptzqtq z  .  

The position of the piston rod z2(t) corresponding to the middle position of the 

piston is the operating point, we mark it as z20. 

Because for the increment of the output displacement the equality 
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The linearized equations (4.12) − (4.14) will have the forms  
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where the quantity z10, z20, p0, q0, f0 correspond to the operating point or nominal values.  

The partial derivative (4.20) must be computed for the operating point. 

Assuming zero initial conditions we use the Laplace transform on the equations 

and after modification we get. 
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Fig. 4.3 Block diagram of the linearized hydraulic double acting linear motor with spool 

control valve – Example 4.1 

Based on the block diagram, we can easily determine the transfer functions 
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where T1 is the time constant [s], k1 – the gain for the input spool displacement [s
-1

], k2 

– the external force gain [N
-1

 m s
-1

]. 

 

Fig. 4.4 Simplified block diagram of the linearized hydraulic double acting linear motor 

with spool control valve – Example 4.1 

On the basis of the transfer functions (4.23) and (4.24) the linearized hydraulic 

linear motor with the control valve can be expressed by a very simple block diagram 

(Fig. 4.4). 

If the pressure p(t) is constant, then kp = 0 [see (4.20)] and the substantial 

simplification of both transfer functions (4.23) and (4.24) takes place 

As
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sZ

sV

sY
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where kz1 is the gain [m
3
 s]. 

The transfer function (4.26) is the simplest mathematical model of the hydraulic 

linear motor with the control valve. 

4.2 Plant transfer function modification 

Mathematical models obtained in an analytical or experimental way are often too 

complex. They are mostly mathematical models of controlled systems, i.e. plants or 

processes. If a plant´s mathematical model has the form of a transfer function, then it is 

possible to simplify it on the basis of its step response or directly by the simple 

modification (conversion) of its transfer function.  

Plant transfer function modification on the basis of step response 

Suppose we can obtain by simulation the plant step response, then it is possible to 

use one of the following procedures. All of these procedures can be also used for simple 

experimental identification, assuming that the courses of the step responses are properly 

made up (by filtering, smoothing, etc.). We work with incremental variables, i.e., all 

courses begin at the origin of the coordinates. It is assumed that the time constants 

satisfy the condition 

,2,1,1   iTT ii , (4.28) 
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i.e. the time constant with lower subscript has greater or equal value than the time 

constant with the higher subscript.  

The modification of the plant transfer function consists in plotting the step 

response and the subsequent determination of its transfer function in the desired form. 

If the plant is nonoscillatory proportional and has the step response hP(t) similar to 

Fig. 4.5a, the simplest way to identify its transfer function is to determine the substitute 

time delay Tu = Td1 and the substitute time constant Tn = T1 on the basis of Fig. 4.5a.  

sT
P

d

sT

k
sG 1e

1
)(

1

1 


 , (4.29) 

where T1 is the time constant, Td1 – the time delay, k1 – the plant gain.  

This is the transfer function of the FOPTD (first order plus time delay) plant. 

In this way the determined transfer function is very rough. It is used for the 

preliminary controller tuning by the Ziegler – Nichols step response method (see 

Section 6.2) [2 – 4, 10, 21 – 24, 26, 29, 31]. 

a) b) 

 )(thP  

t 0 Tu Tn 

Tp 

S 

)(Ph  

              

 

t 0 t0.33 

S 

)(Ph  

t0.7 

)(7.0 Ph  

)(33.0 Ph  

)(thP  

 

Fig. 4.5 Plant transfer function determination on the basis of: a) substitute time delay Tu 

= Td1 and substitute time constant Tn = T1, b) times t0.33 and t0.7 

Considerably the better way for determination of the transfer function in the form 

(4.29) is using the times t0.33 and t0.7 in accordance with Fig. 4.5b and the following 

formulas [22, 26, 29] 
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These relations are analytically determined. For the normalized step response it 

can be written (Fig. 4.6) 
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d 



  . 

The delayed Heaviside step η(t – Td1) ensures hP(t) = 0 for t < Td1. 

For values A and B the equations 
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Fig. 4.6 Plant transfer function determination on the basis of times tA and tB  

hold, from which  the desired formulas are obtained 

)(
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 . 

It is obvious that the values A and B of the normalized step response should be 

chosen so they are approximately equal to 1/3 and 2/3, and so that the numerical 

coefficients in resultant formulas are easy to remember.  

For instance for A = 0.33 and B = 0.7 there is obtained (4.30). 

Similarly for A = 0.28 and B = 0.63 there is obtained 
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 (4.31) 

On the basis of the times t0.33 and t0.7 it is possible to obtain the transfer function 

of the nonoscillatory SOPTD (second order system plus time delay) plant [22, 26, 29]: 
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where 
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 (4.33) 

The complementary area S over the step response can be used for approximate 

verification (Fig. 4.5) 
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The formulas (4.33) were obtained numerically from the correspondences of the 

original step response and the approximate step response in the values hP(0) = 0, 

hP(t0.33) = 0.33hP(∞), hP(t0.7) = 0.7hP(∞) and hP(∞) [22, 26, 29]. 

Very good approximation of the step response course of the nonoscillatory 

SOPTD plant can be obtained for the transfer function with two different time constants  
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 (4.36) 

The inequality D2 > 2D1 must hold, otherwise the transfer function (4.32) must be 

used.  

For fast mutual conversion of the plant transfer functions Tab. 4.1 and the 

diagram (4.37) can be used [22, 26, 29]. 
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Tab. 4.1 Table for fast transfer function conversion in accordance with  

the diagram (4.37) 
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Tab. 4.1 was obtained numerically on condition that the values hP(0), hP(t0.33), 

hP(t0.7) and hP(∞) of the original and the conversed step responses are the same. 

For approximate identification of the IFOPD (integral plus first order plus time 

delay) plant with the transfer function  

sT
P

d

sTs

k
sG 1e

)1(
)(
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1 


  (4.38) 

it is possible to use its step response (Fig. 4.7), where the time delay is approximately 

estimated. If the input step is not a unit, i.e. Δu(t) ≠ η(t), but Δu(t) = Δuη(t), then it is 

necessary to consider the value in brackets. 
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Fig. 4.7 Integrating plant transfer function determination  

Direct transfer function modification 

The simplest direct transfer function modification (conversion) is based on the 

equality of complementary areas over original and conversed plant step responses. 

Nonoscillatory proportional plants 
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Nonoscillatory integrating plants 
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It is advantageous to use a combination of the substitute summary time constant 

TΣ and the substitute time delay Td, see the "half rule" below. 

If in the numerator of the plant transfer function the binomials  

si1 , (4.46) 

stand up, then each binomial can be substituted by the term  

sie  (4.47) 

on the assumption that the resulting time delay will be positive. 

The fact that in the above simple modifications the equality of the complementary 

areas over the origin and the modified plant step responses hold can be easily shown. 

They are considered the plant transfer functions 
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It is obvious that it holds (see Appendix A) 
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where X(s) is the Laplace transform of the time function x(t) 
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For the transfer function G1(s) the complementary area over the step response 

h1(t) can be obtained on the basis of the last relation 


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 Ttth
0

1 d)](1[ . 

For the transfer function G2(s) the complementary area over the step response 

h2(t) can be obtained on the basis of the relation 

dd TtTttth  


00

2 d)](1[d)](1[  . 

Geometric interpretation of the substitute summary time constant T∑ and the 

substitute time delay Td is shown in Fig. 4.8. 

The substitute step responses h1(t) and h2(t) crosses the original step response hP(t) 

at such a point, so that areas S1 and S2 above and below the corresponding substitute 

step response are the same. 

The empirical method using the "half rule" is very simple and effective at the 

same time [20]. 



VÍTEČEK, A., VÍTEČKOVÁ, M. Closed-Loop Control of Mechatronic Systems 

 

69 

 

t 

h  t P ( ) 

0 

h t ( ) 

 
 

n 

i 
i T 

1 

   

 

t 

h  t P ( ) 

0 

h t ( ) 

 T 

S 1 

S 1 

 
 

  

n 

i 
i T T 

1 

h  t 1 ( ) 

   

 

t 

h  t P ( ) 

0 

h t ( ) 

S 2 

S 2 

h  t 2 ( ) 

d T 

 
 

 

n 

i 
i d T T 

1 

 

Fig. 4.8 Geometric interpretation of substitute summary time constant T∑ and substitute 

time delay Td  

Assuming that the plant transfer function has the form with unstable zeros 
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then on the basis of the " half rule" for the substitute plant transfer function (4.29) we 

get 
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or for the substitute plant transfer function (4.35) 
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It is obvious, that the equalities  

22111000 ddd
j

j
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i TTTTTTT   , (4.56) 

hold, i.e. the "half rule" conserves the equality of the complementary areas over the 

substitute plant step responses and the original plant step response. In these areas it 

suitably divides between a time constant and a time delay or among two time constants 

and a time delay.  

In the case when plant transfer functions have stable zeros the use of the 

procedure based on times t0.33 and t0.7 is preferable and at the same time it is more 

accurate. 

Example 4.2 

The plant transfer function is 

4)16(

2
)(




s
sGP . (4.57) 

It is necessary to modify it in the forms (4.29) and (4.32) on the basis of the 

diagram (4.37) and Tab. 4.1 as well as the “half rule” (the time constant is in min). 
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Solution: 

In accordance with scheme (4.37) and Tab. 4.1 we can write: k1 = 2, T4 = 6, 

Td4 = 0. 

a) The transfer function (4.29) 
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b) The transfer function (4.32) 
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A comparison of the step response obtained from the transfer function (4.57) with 

the step responses obtained on the basis of the modified transfer functions (4.58) and 

(4.59) is shown in Fig. 4.9.  

 

Fig. 4.9 Comparison of step responses (Tab. 4.1) – Example 4.2 

Now for comparison we simplify the transfer function (4.57) using the "half rule". 

For the "half rule" we can write: T10 = T20 = T30 = T40 = 6, Td0 = 0. 

a) The transfer function (4.29) 

In accordance with the relation (4.54) we get 
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b) The transfer function (4.35) 

In accordance with the relation (4.55) we get 
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A comparison of the step responses is shown in Figure 4.10. 

 

Fig. 4.10 Comparison of step responses ("half rule") – Example 4.2 

Example 4.3 

On the basis of the "half rule" the transfer function with the unstable zero  
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must be modified in the forms (4.29) and (4.35). The time constants and the time delay 

are in seconds. 

Solution: 

For the transfer function (4.62) we can write: T10 = 5, T20 = T30 = 2, τ10 = 1, 

Td0 = 3. 

a) The transfer function (4.29) 

In accordance with the relation (4.54) we can directly write 
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b) The transfer function (4.35) 

Similarly as in the previous case, in accordance with (4.55) we can write 
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A comparison of the step responses is shown in Fig. 4.11. 

 

Fig. 4.11 Comparison of step responses – Example 4.3 
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5 CLOSED-LOOP CONTROL SYSTEMS 

5.1 Controllers 

We will mostly deal with the closed-loop control system (further we will use 

mostly the control system) in Fig. 5.1 (see also Fig. 1.3), where the GC(s) is the 

controller transfer function, GP(s) – the plant (process) transfer function, W(s) – the 

transform of the desired variable w(t), E(s) – the transform of the control error e(t), U(s) 

– the transform of the manipulated variable u(t), Y(s) – the transform of the controlled 

(process) variable y(t), V(s) and V1(s) – the transforms of the disturbance variables v(t) 

and v1(t). 

For reasons of simplicity we will very often omit the word "transform", because it 

will be clear from the text whether the transform or the original of the corresponding 

variable is concerned. 

 

Fig. 5.1 Block diagram of the control system  

If the disturbance variables cannot be measured or otherwise specified more 

precisely, it is appropriate to aggregate them into a single disturbance variable and place 

it in the least favourable position in the control system. In the case of the integrating 

plant it is its input and, if the plant is proportional it is its output. 

As it was already mentioned in Chapter 1 the control objective can be expressed 

in two equivalent forms, see the relations (1.4). For the control system in Fig. 5.1 we 

can write: 

a) The control objective in the form 

)()(ˆ)()( sWsYtwty  . (5.1) 

According to Fig. 5.1 and the linearity principle we can write  

)()()()()()()( 11
sVsGsVsGsWsGsY yvvywy  , (5.2) 

where 

)()(1

)()(
)(
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PC
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
  (5.3) 

is the (closed-loop) control system transfer function, 

)()](1[
)()(1

)(
)( sGsG
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sG Pwy

PC

P
vy 


  (5.4) 

and 
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)(sGP  
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)(1
)()(1

1
)(

1
sG
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sG wy

PC

yv 


  (5.5) 

are the disturbance transfer functions for the disturbance variables V(s) and V1(s). 

For fulfilling the control objective (5.1) for any desired variable W(s) and any 

disturbance variables V(s) and V1(s) these conditions must hold 

1)( sGwy , (5.6) 

0)( sGvy , (5.7) 

0)(
1

sG yv . (5.8) 

The first condition for the control system transfer function (5.6) expresses the 

controller function consisting in the tracking of the desired variable W(s) by the 

controlled variable Y(s), it is the servo problem. The other two conditions (5.7) and (5.8) 

represent the controller function consisting in rejecting disturbance variables V(s) and 

V1(s), it is a regulatory problem [this applies in particular to disturbances V(s)]. 

From (5.4) and (5.5) it follows, when the condition (5.6) for the control system 

transfer function will hold, then at the same time the conditions (5.7) and (5.8) for 

disturbance transfer functions will hold. 

b) The control objective in the form 

0)(ˆ0)(  sEte . (5.9) 

According to Fig. 5.1 and the linearity principle we can write  

)()()()()()()( 11
sVsGsVsGsWsGsE evvewe  , (5.10) 

where 

)(1
)()(1

1
)( sG

sGsG
sG wy

PC

we 


  (5.11) 

is the desired variable-to-the control error transfer function or the error control system 

transfer function, 
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and 
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1
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1
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ev 


  (5.13) 

are the disturbance variable-to-the control error transfer functions for the disturbance 

variables V(s) and V1(s). 

The transfer functions (5.3) – (5.5) and (5.11) – (5.13) are the basic transfer 

functions of the given control system. The first or the second triad of the transfer 

functions describes the control system uniquely. 

For fulfilling the control objective (5.9) for any desired variable W(s) and any 

disturbance variables V(s) and V1(s) these conditions must hold 
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0)( sGwe , (5.14) 

0)( sGve , (5.15) 

0)(
1

sG ev . (5.16) 

Similarly as in the previous case the first condition for the desired variable-to-the 

control error transfer function (5.14) expresses the controller function consisting in the 

tracking of the desired variable W(s) by the controlled variable Y(s) (the servo problem). 

The other two conditions (5.15) and (5.16) represent the controller function consisting 

in rejecting the disturbance variables V(s) and V1(s) (the regulatory problem). 

From (5.11) – (5.13) it also follows, when the condition (5.6) for the control 

system transfer function will hold, then at the same time the conditions (5.14) – (5.16) 

will hold. 

We see that both control objective formulations (5.1) and (5.9) are equivalent to 

each other and it is obvious that if the condition (5.6) for the control system transfer 

function will hold, all conditions, i.e. (5.7), (5.8) and (5.14) – (5.16) will hold too. 

Therefore, we will further deal mainly with the control objective (5.1) and main 

attention will be paid to the control system transfer function (5.3). 

The control system frequency transfer function has the form  

1
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and it is obvious that the relations hold  
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or 

1)(1)j()j()j(  sGGGG wywyPC  . (5.19) 

From relation (5.18) it follows that if a sufficiently high value of the modulus of 

the frequency controller transfer function will be ensured  

)j()j(mod)(  CCC GGA  , (5.20) 

then conditions (5.6) and (5.8) will be held with sufficient accuracy and for the 

nonsingular GP(s) the condition (5.7) will be held as well.  

If the plant properties given by the plant transfer function GP(s) will be known, 

then it is easier to ensure a sufficiently high value of the modulus of the frequency 

open-loop control system transfer function  

)j()j()j()j(mod)(  PCooo GGGGA  , (5.21) 

see relations (5.19). 

High values of the modules AC(ω) or Ao(ω) must be ensured in the operating 

range of angular frequencies while ensuring stability and the required control process 
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performance. This can be achieved by an appropriately selected controller and its 

subsequent proper tuning. 

Industrial controllers are available in different versions and modifications, and 

therefore the basic structures and modifications of the commonly used conventional 

controllers will be presented [2 – 6, 9 – 11, 13 – 17, 19 – 31]. 

Analog (continuous) conventional controllers are implemented as a combination 

of three basic components (terms): proportional – P, integral – I and derivative – D. 

The controller which consists of all three components is called the proportional plus 

integral plus derivative controller or for short the PID controller and its properties in 

the time domain can be described by the relation 

,
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 (5.22) 

where KP, KI and KD are the proportional, integral and derivative component 

weights, KP – the controller gain (the proportional component weight), TI and TD – the 

integral and derivative time constants. 

Some industrial controllers instead of the gain KP use the inverse value 

 %
100

Pk
pp   (5.23) 

called the proportional band. 

The parameters KP, KI and KD, or KP, TI and TD are the controller adjustable 

parameters. The task of controller tuning is to ensure the required control performance 

process by selecting the appropriate values of the controller adjustable parameters for 

the given plant. 

Among the controller adjustable parameters the conversion relations hold 
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or 
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T  , . (5.25) 

Since the proportional component weight KP is identical to controller gain KP, and 

also in its name, the controller gain is often used. 

Using the Laplace transform and assuming zero initial conditions from relation 

(5.22)  the PID controller transfer function is obtained  
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Fig. 5.2 shows the modules of the components P, I and D of the PID controller. 

From Fig. 5.2 it follows that the integral component (I) provides a high modulus of the 



VÍTEČEK, A., VÍTEČKOVÁ, M. Closed-Loop Control of Mechatronic Systems 

 

77 

frequency PID controller transfer function at low angular frequencies and especially at 

steady state (ω = 0), the derivative component (D) at high angular frequencies and the 

proportional component (P) over the entire operating range of angular frequencies, but 

especially for middle angular frequencies. Just by using the appropriate choice of 

components P, I and D, i.e., by the appropriate choice of values of controller adjustable 

parameters KP, KI and KD, or KP, TI and TD there can be achieved a high modulus of the 

frequency controller transfer function (5.20) or the modulus of the frequency open-loop 

control system transfer function (5.21), and thus fulfilment of the conditions (5.18) or 

(5.19). 

 

Fig. 5.2 Courses of component modules of PID controller 

Tab. 5.1 Transfer functions of conventional controllers  

 Type Transfer function 
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In practice, simpler controllers are used (relations with time constants are 

considered only): the P (proportional) controller, the I (integral) controller, the PI 

(proportional plus integral) controller and the PD (proportional plus derivative) 

controller. The transfer functions of conventional controllers are transparently brought 

out in Tab. 5.1 (the rows 1 – 5). A controller with just a derivative component cannot be 

used because it reacts only at the time change of e(t), i.e. )(te , therefore it causes 

disconnection of the control loop in the steady state. 

A block diagram of the PID controllers with the transfer function (5.26) is shown 

in Fig. 5.3a, which shows that it has a parallel structure. For such type of PID controller 

all the adjustable parameters can be set independently, and therefore controllers with a 

parallel structure are also called PID controllers without interaction (non-interacting). 

a) 

 
b) 

 

Fig. 5.3 Block diagram of PID controller with structure: a) parallel (without interaction),  

b) serial (with interaction) 

Sometimes the form (5.26) with weights is only considered as a parallel form of 

the PID controller and the form with time constants (Fig. 5.3a) is often called the 

standard form according to ISA (The International Society of Automation, formerly 

the Instrument Society of America). 

A PID controller can be also realized on the basis of the serial (cascade) structure 

(see Fig. 5.3b). Its transfer function has the form 
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which can be rewritten on the parallel structure (5.26) 
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From equation (5.28) it is obvious that when the values of the integral time IT   or 

derivative time DT   are changed then all adjustable parameters KP TI and TD 

corresponding to the parallel (standard) structure change their values, i.e. there is an 

interaction between the adjustable parameters. Therefore the PID controller with a serial 

structure is also called the PID controller with interaction (interacting) and is referred 

to as the PIDi controller (see Tab. 5.1, row 6). 

Among the adjustable parameters of the parallel and the serial structure the simple 

conversion relations hold [2, 26, 29]: 

I

DD
DIIPP

T

T
i

i

T
TiTTiKK







 1,,, , (5.29) 

I

DD
DIIPP

T

TT
TTTKK 

4

1

2

1
,,, 


 . (5.30) 

The coefficient i is also called the interaction factor. The values of the adjustable 

parameters KP, TI and TD of the PID controller (without interaction) are the effective 

values, since most controller tuning methods assume the standard parallel structure of 

the PID controller (Fig. 5.3a), and therefore the values of the adjustable parameters PK  , 

IT   and DT    of the PIDi controller (with interaction) should be converted into the 

effective values on the basis of the relations (5.29), i.e. on the KP, TI and TD. 

For the PID controller with a serial structure, i.e. for the PIDi controller the 

restriction  

4

1


I

D

T

T
, (5.31) 

exists which is not however essential [see formula for β (5.30)]. 

The serial structure of the PIDi controller has its advantages. It simply can be 

realized, e.g. as a serial interconnection of the PI and the PD controllers, see Fig. 5.3b 

and relation (5.27). Its production is also cheaper. Realization of the PIDi controller on 

the basis of the operational amplifier is shown in Example 3.5. For 0 DD TT parallel 

and serial structures are equivalent to the PI controller. 

From a theoretical point of view the derivative component has a positive 

stabilizing effect on the control process. From a practical point of view, however the 

derivative component has a very unpleasant property, which consists of amplifying a 

high frequency noise (see Fig. 5.2), and quick changes. For instance if the derivative 

component of the PD or PID controllers 

t

te
TK

t

te
K DPD

d

)(d

d

)(d
  (5.32) 

processes the control error e(t), which contains harmonic noise with the amplitude aS 

and the angular frequency ωS, i.e. [2] 
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tate SS sin)(  , 

then the derivative component (5.32) output is 
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d
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TK SSSDP  , (5.33) 

where 
t

te

d

)(d
 is the useful part of the derivative component and ta SSS  cos  is the 

parasite part of the derivative component. 

From the relation (5.33) it follows that for higher angular frequencies ωS the 

parasite part will dominate over the useful part and the derivative component output can 

cause an incorrect controller function and even in the whole control system. This is why 

the ideal derivative operation is practically unusable. An internal filter of the derivative 

component with the transfer function 
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, (5.34) 

is used, where N = 5 ÷ 20 or α = 0.05 ÷ 0.2 [2, 17, 22, 24 – 26, 29]. 

The task of the internal filter is to attenuate the parasite noise, which the 

controlled variable y(t) mainly contains. When the values of α ≤ 0.1, then the internal 

filter does not fundamentally affect the final properties of a controller, and it is not 

therefore usually considered during controller tuning. In industrial controllers the 

internal filter (5.34) is usually preset to α = 0.1 (N = 10) [2, 4, 22, 29]. 

The transfer function of the PID controller with the internal filter has the form  
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Conventional controllers given in Tab. 5.1, even with internal filter (5.35), allow 

such tuning which ensures the desired control process performance only from the point 

of view of the desired variable w(t) and the disturbance variable v1(t) acting on the plant 

output. 

If disturbance variable v(t) is acting on the plant input, a compromise tuning is 

usually used. Problems arise when the plant has an integral character, then a 

compromise tuning is not possible [22, 25, 29, 30]. In this case, it is appropriate to use 

the controller with two degrees of freedom (2DOF controllers). 

For instance properties of the ideal 2DOF PID controller are described in what is 

called the ISA form (Fig. 5.4) [2, 22, 29] 


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 )]()([)]()([
1

)()()( sYscWsTsYsW
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sYsbWKsU D

I

P , (5.36) 

where b is the set-point weight for proportional component, c – the set-point weight for 

derivative component. 

Both weights can change in the range from 0 to 1. For b = c = 1 the relation (5.36) 

expresses the equation of the conventional PID controller (the 1DOF PID controller), 

see the relation (5.26).  
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Fig. 5.4 Block diagram of the 2DOF PID controller corresponding to relation (5.36) 

The relation (5.36) can be rewritten in the form  
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where GF(s) is the input filter transfer function, GC(s) – the conventional (1DOF) PID 

controller transfer function. 

The block diagram in Fig. 5.5 corresponds to the relation (5.37). 

 

Fig. 5.5 Block diagram of 2DOF PID controller corresponding to relation (5.37) 

From Fig. 5.5 it is clear, that the PID controller with the transfer function GC(s) 

[(5.39)] is tuned with regard to quickly attenuate the negative influence of the 

disturbance variable v(t) (the regulatory problem) and by the appropriate choice of 

weights b and c the input filter with the transfer function GF(s) is tuned [(5.38)] from the 

point of view of the changes of the desired variable w(t) (the servo problem). For b = c 

= 1  GF(s) = 1 and the control system in Fig. 5.5 there are the properties of a control 

system with a conventional PID controller, i.e. with a controller with one degree of 

freedom (1DOF). 
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When using a controller with an integral component and with the manipulated 

variable limiting (i.e. in the presence of saturation), a very unpleasant phenomenon 

appears – the so-called windup (the ongoing integration). Fig. 5.6 explains it. 

Since the transforms of variables and the originals of variables stand out at the 

same time in Fig. 5.6, all variables are thereby represented by small letters without 

specifying independent variables. 

Precaution against the windup is called antiwindup and it can be realized as 

shown in Fig. 5.6a. Fig. 5.6b shows that when u1(t) exceeds the value of u(t) = um, a 

negative feedback takes effect (Fig. 5.6a) and the input of the integrator is reduced with 

the value a[u1(t) – u(t)] and it causes a drop in the growth of the output value of the 

integrator u1(t). The courses u1(t) and u(t) in Fig. 5.6b show that the implementation of 

the antiwindup caused the significant reduction windup delay w
dT . The windup delay 

w
dT  is the main reason of a prolonged overshoot in the control system, and thereby a 

deterioration of control process performance. The value of a (Fig. 5.6a) must be 

sufficiently large, as is apparent from Fig. 5.6b. 

a) 

 
b) 

 

Fig. 5.6 Integral controller with antiwindup: a) block diagram, b) courses of variables 

The realization of the PI controller with the antiwindup is shown in Fig. 5.7. 
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Fig. 5.7 Realization of the PI controller with antiwindup 

a) 

 
b) 

 

Fig. 5.8 Courses of controlled variable a) and manipulated variable b) in a control 

system with I controller: 1 – linear, 2 – with saturation and without antiwindup, 3 – with 

saturation and with antiwindup 
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The courses of controlled variable and manipulated variable in the control system 

with the I controller are shown in Fig. 5.8 for three cases. The first case – without the 

saturation (the linear control system) – course 1, the second case – with the saturation 

and without the antiwindup (the nonlinear control system) – course 2, the third case – 

with the saturation and with the antiwindup (the nonlinear control system) – course 3. 

From Fig. 5.8 it is clear that manipulated variable limiting causes a slow response. 

Manipulated variable limiting usually has a stabilizing effect, but if an antiwindup is not 

used, the control process performance is significantly reduced.  

The ongoing integration – the windup acts primarily in analog controllers. In 

digital controllers the antiwindup is simply dealt with by stopping the integration 

(summation) at saturation. 

5.2 Stability 

The stability of the linear control system is its ability to stabilize all variables at 

finite values if the input values are fix ed at finite values. The input variables in the 

control system are the desired variable w(t), and any disturbance variable, often 

aggregated into a single disturbance variable v(t) or v1(t). 

It is obvious that the following stability definition is equivalent. The linear 

control system is stable if the output is always bounded for any bounded input. It is 

called BIBO stability (bounded-input bounded-output). 

From both stability definitions it follows that stability is a characteristic property 

of the control system, which does not depend on inputs or outputs (it does not hold for 

nonlinear control systems). 

Since the control system (Fig. 5.1) is fully described by the equation 

)()()()()()()( 11
sVsGsVsGsWsGsY yvvywy   (5.40a) 

or 

)()()()()()()( 11
sVsGsVsGsWsGsE evvewe  , (5.40b) 

it is clear that the stability must be given by a term which figures in all basic control 

system transfer functions Gwy(s), Gvy(s) and Gv1y(s) or Gwe(s), Gve(s) and Gv1e(s). From 

the basic control system transfer functions (5.3) – (5.5) and (5.11) – (5.13) it follows 

that this term is their denominator 
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)()(
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1)(1)()(1

sN
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sMsN

sN

sM
sGsGsG

oo

oo

o

o
oPC 


 , (5.41) 

where Go(s) is the open-loop control system transfer function (it is generally given by 

the product of all transfer functions in the loop), No(s) – the characteristic polynomial of 

the open-loop control system (the denominator of the open-loop control system transfer 

function), Mo(s) – the polynomial in the nominator of the open-loop control system 

transfer function. 

The polynomial 

)()()( sMsNsN oo   (5.42) 

is called the characteristic polynomial of the control system and after its equating to 

zero the characteristic equation of the control system 
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0)( sN  (5.43) 

is obtained. 

The characteristic polynomial (5.42) figures in the denominator of each basic 

control system transfer function after its arrangement, and therefore it is at the same 

time the characteristic polynomial of the differential equation describing the control 

system. 

We show that a necessary and sufficient condition for the stability of the linear 

control system is that the roots s1, s2, ..., sn of its characteristic polynomial (or its 

characteristic equation) 

)())(()( 2101 nn
n

n ssssssaasasasN    (5.44) 

have negative real parts, i.e. (see Fig. 5.9) 

nisi ,,2,1for,0Re  . (5.45) 

The negativity condition (5.45) for the real parts of the roots of the 

characteristic polynomial of the control system (5.42) or, equivalently, for the real 

parts of the roots of the characteristic equation of the control system (5.43) is a 

necessary and sufficient condition for the (asymptotic) stability of the control system. 

Since the concept of stability of the nonlinear control system has a somewhat 

different meaning, it is necessary, if there could be a misunderstanding, when the 

necessary and sufficient conditions for stability of the linear control systems hold to use 

a more precise concept of “asymptotic” stability. 

It should be noted that complex roots (poles) always come in complex conjugate 

pairs (i.e. in the symmetry in the real axis in the complex plane s). 

It should also be noted that the roots s1, s2, ..., sn are at the same time the poles of 

the basic control system transfer functions (i.e. the poles of the control system). This 

does not apply to the zeros of the basic control system transfer functions. The poles of 

the control system are determined for their dynamic properties. 

Now we will show how the necessary and sufficient condition for stability of the 

control system (5.45) can be obtained. 

Consider any basic control system transfer function, e.g. the control system 

transfer function  

)(

)(
)(

sN

sM
sGwy   (5.46) 

and the desired variable transform 

)(

)(
)(

sN

sM
sW

w

w , (5.47) 

where M(s), Mw(s) and Nw(s) are the polynomials and N(s) is the characteristic 

polynomial of the control system.  

Assuming that the characteristic polynomial of the control system N(s) has the 

simple roots s1, s2, ..., sn and the polynomial Nw(s) has the simple roots w
p

ww sss ,,, 21    
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[p is the degree of the polynomial Nw(s)], the controlled variable transform – the 

response transform 

)(

)(

)(

)(
)()()(

sN

sM

sN

sM
sWsGsY

w

w
wy   (5.48) 

can be written as the sum of partial fractions (see Appendix A) 
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, (5.49) 

where YT(s) is the transform of the transient response part, YS(s) the transform of the 

steady response part.  

The original of the controlled variable y(t) can be obtained from (5.49) on the 

basis of the Laplace transform 
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iST
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ji BAtytyty ee)()()(
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 . (5.50) 

The constants Ai and Bj in the relations (5.49) and (5.50) generally depend on the 

form of the control system transfer function Gwy(s) and the desired variable W(s), see 

(5.46) and (5.47). 

The course of the transient response part of the controlled variable yT (t) depends 

on the roots of the characteristic polynomial of the control system, i.e. of its poles and it 

is given by relation  





n

i

ts
iT

iAty
1

e)( . (5.51) 

The course of the steady response part of the controlled variable  

ts
p

j
jS

w
jBty e)(

1




  (5.52) 

is given by the course of the desired variable w(t). 

Here, the steady course means the given general time function, e.g. yS(t) = Bt, 

yS(t) = Bsinωt , etc. contrary to the steady (idle) state, e.g. yS(t) = yS = const. 

From relation (5.50) it follows that for the bounded input variable – the desired 

variable w(t) ( 0Re w
js  for j = 1, 2,..., p) the output variable – the controlled variable 

y(t) will be bounded if and only if its transient response part yT(t) will be bounded, i.e. if 

the condition (5.45) will hold. Therefore for a stable control system the transient 

response part must vanish for an increasing time t, i.e. 

0)(lim 


tyT
t

, (5.53) 

hence for t → ∞ it holds 

)()( tyty S . (5.54) 



VÍTEČEK, A., VÍTEČKOVÁ, M. Closed-Loop Control of Mechatronic Systems 

 

87 

The last relation shows that the control system stability is its ability to stabilize the 

output – the controlled variable y(t) → yS(t) at the steady-state input – the desired 

variable w(t) → wS(t). 

For the control system from the control objective y(t) → w(t) the obvious 

requirement follows yS(t) → wS(t). 

 

Re 0 

Im s 

 

Fig. 5.9 Influence of control system pole placement on the course of transient response  

It is obvious that all conclusions will also apply for the multiple roots of the 

polynomials N(s) and Nw(s) in equation (5.48), because adding negligibly small 

numbers to multiple roots changes them at simple roots and the small change cannot 

significantly affect the properties of the control system. 

The influence of control system pole placement on courses of transient responses 

is shown in Fig. 5.9. It should be noted that the oscillatory response is caused by the 

complex conjugate pair of poles. 

For a control system with a time delay the open-loop transfer function has the 

form [compare with (5.41)] 

sT
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o
o

d

sN

sM
sG


 e

)(

)(
)( , (5.55) 

from which the characteristic quasipolynomial of the control system can be obtained 

[compare with (5.42)] 

sT
oo

dsMsNsN


 e)()()( . (5.56) 

The characteristic quasipolynomial (5.56) has an infinite number of roots, i.e. the 

control system with a time delay has an infinite number of poles. Therefore verifying 

the fulfilment of the necessary and sufficient condition for stability (5.45) by direct 

calculation is unrealistic. 

The stability of the control system is a necessary condition for its proper 

operation. For stability verification a wide variety of criteria is used, which allow to 
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check the fulfilment of inequality (5.45) without the labourously calculating the roots of 

the characteristic polynomial or quasipolynomial of the control system N(s). 

Three stability criteria will be introduced without derivation: Hurwitz, Mikhailov 

and Nyquist. 

Hurwitz stability criterion 

The Hurwitz stability criterion is an algebraic criterion, and therefore it is not 

suitable for control systems with a time delay (the exponential function is not an 

algebraic function). However, it can be used for approximately verifying stability when 

the time delay is represented by an approximation in the form of a rational function, e.g. 

(3.54) or (3.55). 

The Hurwitz stability criterion can be formulated in the form: 

„The linear control system with the characteristic polynomial  

01)( asasasN n
n    

is (asymptotically) stable [i.e. the  inequalities (5.45) hold] if and only if, when:  

a) all coefficients a0, a1,..., an exist and are positive (it is the Stodola necessary 

stability condition, it was formulated by a Slovak technician A. Stodola) 

b) the main corner minors (subdeterminants) of the Hurwitz matrix 
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2,11   

are positive.“ 

Since the equalities H1 = an–1, Hn = a0Hn–1 hold, it is enough to check only the 

positiveness of H2, H3, ..., Hn–1. The zero value of one of Hurwitz minors indicates the 

stability boundary. For instance, if a0 = 0, then one pole is zero (it is the origin of the 

coordinates in the complex plane s). This case characterizes the nonoscillating stability 

boundary. If Hn-1 = 0, then the two poles are imaginary (the poles are on an imaginary 

axis in symmetry by the origin in complex plane s). This case characterizes the 

oscillating stability boundary, see Fig. 5.9 

If the Stodola necessary stability condition holds, then the simplified Lineard-

Chipart stability criterion can be used, which consists only in checking the 

positiveness of all odd or all even Hurwitz minors. 

The disadvantage of the Hurwitz stability criterion is its computational complexity 

for n ≥ 5. 
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Mikhailov stability criterion 

The Mikhailov criterion is a frequency stability criterion with a very wide field of 

use. Here it will be shown as a simple formulation suitable for control systems without a 

time delay. 

The Mikhailov stability criterion is based on the characteristic polynomial of the 

control system N(s) from which after substituting s = jω the Mikhailov function is 

obtained 

)(j)()()(j
j


 QPs

NNsNN 


, (5.58) 

where 

 4
4

2
20)(jRe)(  aaaNN P  (5.59a) 

is the real part and  

 5
5

3
31)(jIm)(  aaaNNQ  (5.59b) 

is the imaginary part of the Mikhailov function. 

Its plot is called the Mikhailov hodograph (curve, characteristic).  

Now the Mikhailov stability criterion can be formulated in the form:  

"The linear control system is (asymptotically) stable if and only if its Michailov 

hodograph N(jω) for 0 ≤ ω ≤ ∞ begins on the positive real axis and successively passes 

through n quadrants in a positive direction (counter-clockwise)." 

This formulation can be written for a change of the Mikhailov function argument  

2
)(jarg

0






nN 


, (5.60) 

where n is the control system characteristic polynomial N(s) degree. 

The courses of the Mikhailov hodographs for stable control systems are shown in 

Fig 5.10a and for unstable control systems in Fig. 5.10b. 
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Fig. 5.10 Courses of Mikhailov hodographs for control systems:  

a) stable, b) unstable 
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Fig. 5.11 Courses of real part NP(ω) and imaginary part NQ(ω) of the Mikhailov 

hodograph for n = 5 for control system: a) stable, b) unstable 

From the courses of the Mikhailov hodographs for stable control systems in Fig. 

5.10a it follows that for 0 ≤ ω ≤ ∞ the imaginary part NQ(ω) and the real part NP(ω) of 

the Mikhailov hodograph are successively equal to zero [the imaginary part NQ(ω) when 

passing through the real axis and the real part NP(ω) when passing through the 

imaginary axis], hence the Mikhailov stability criterion can be formulated in an 

equivalent form (Fig. 5.11): 

"The linear control system is (asymptotically) stable if and only if NP(0) = a0 > 0 

and if for 0 ≤ ω ≤ ∞ roots of NQ(ω) and NP(ω) alternate with each other." 

The advantage of this formulation is that it can be written analytically: 
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It is clear that the number of roots ωi is equal to the control system characteristic 

polynomial N(s) degree n. 

If the control system is on the nonoscillating stability boundary than NP(0) = a0 = 

0 and the Mikhailov hodograph begins from the origin of coordinates. On the other 

hand, if NP(0) = a0 > 0 and the Mikhailov hodograph passes through the origin of 

coordinates, then it is on the oscillating stability boundary, see Fig. 5.12. In this case, 

the real part NP(ω) and the imaginary part NQ(ω) are zero at the same time. This 

property of the Mikhailov hodograph (function) can be advantageously used for the 

analytical determination of the ultimate (critical) angular frequency ωc and other 

ultimate parameters, which most frequently is the ultimate controller gain KPc or the 

ultimate integral time TIc. 

These ultimate parameters cause the control system to be on the stability 

boundary, i.e. in the critical state between stability and instability. In this case, just a 

slight change of these parameters causes that the control system will be stable or 

unstable. For this reason, when verifying control system stability on the basis of various 

approximations the results must be always accepted very carefully.  
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Fig. 5.12 Courses of Mikhailov hodographs for the control system on the stability 

boundary  

The geometric formulation of the Mikhailov stability criterion is appropriate in 

this case, when the characteristic polynomial coefficients are specified numerically, 

otherwise it is always preferable to have an analytical formulation. 

The Mikhailov stability criterion in the above two formulations may also be used 

for the approximate stability verification of control systems with a time delay, assuming 

that the time delay is approximated by a rational function, e.g. (3.54) or (3.55). 

Nyquist stability criterion 

The Nyquist stability criterion is the frequency criterion, and unlike the Hurwitz 

and Mikhailov criteria it is based on the properties of the open-loop of the control 

system and it is suitable for control systems with a time delay. It may even be extended 

to some nonlinear control systems. 

The control system in Fig. 5.13 is considered. It is clear that when oscillation 

arises with a constant amplitude and a constant angular frequency on the stability 

boundary [W(s) = V(s) = 0] it is necessary that oscillation in the feedback path must be 

the same as oscillation in the forward path but with a negative sign, see Fig. 5.13. It can 

be expressed with the transfer functions  

 

Fig. 5.13 Control system on the stability boundary  

1)(j1)(  coo GsG  , (5.63) 

where Go(s) = GC(s)GP(s) is the open-loop (control system) transfer function (it is 

generally given by the product of all transfer functions in the loop), ωc – the ultimate 
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angular frequency.  

It is obvious that the open loop is stable (otherwise the occurrence and duration of 

the constant oscillation in the control loop is not possible).  

For the control system in Fig. 5.13 the relation (5.63) expresses the condition for 

the oscillating stability boundary. This condition can be obtained on the basis of the 

same denominators of the basic transfer functions [e.g. see (5.3) – (5.5) and (5.11) – 

(5.13)], where the term 1 + Go(s) appears. It is clear that the critical state occurs when 

that term is equal to zero, which corresponds to (5.63). 

The relation (5.63) expresses the fact that if the linear control system is on the 

oscillating stability boundary, then the frequency response of the stable open control 

loop passes through the point -1 on the negative real half-axis. 

The point -1 on the negative real half-axis is called the critical point and the 

open-loop frequency response is called the Nyquist plot. 

Now we can formulate the Nyquist stability criterion: 

"The linear control system is (asymptotically) stable if and only if when the 

frequency response of the stable open-loop control system, i.e. the Nyquist plot Go(jω) 

for 0  does not surround the critical point (–1 + j0) on the negative half-axis."  

The main cases of the Nyquist plots Go(jω) for a stable open-loop and q = 0 due to 

the critical point (–1 + j0) are shown in Fig. 5.14. The integrating elements in the 

forward and feedback path (i.e. in the loop) from the point of view of the Nyquist 

stability criterion are not considered as unstable (they are in fact neutral elements). 

Their number is denoted by the letter q and it is called the control system type. In this 

case, when there is a decision on whether the Nyquist plot surrounds or does not 

surround the critical point (–1 + j0), it is necessary to connect this plot with a positive 

real half-axis by a circle of an infinitely large radius (shown dashed), see Fig. 5.15. 
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Fig. 5.14 Nyquist plots Go(jω) for the stable open-loop and q = 0  

If the Nyquist plot Go(jω) for q = 2 has the course as in Fig. 5.15, then 

conditional stability occurs, because decreasing or increasing the value Ao(ω) for the 

phase –π may cause instability of the control system. 
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The geometric form of the Nyquist stability criterion has been formulated above. 

The analytical form can be very useful too. It is necessary to introduce the gain 

crossover angular frequency ωg, which is defined by the equality (Fig. 5.16)  

1)( goA   (5.64) 

and the phase crossover angular frequency ωp, which is defined by the equality (Fig. 

5.16) 

 )( po . (5.65) 

The angular frequency ωp can be also determined from the relation 

0)(jIm poG  . (5.66) 

For the oscillating stability boundary the relation holds 

pgc   . (5.67) 

Now the Nyquist stability criterion can be written analytically in some of the 

forms:  

1)(jRe)(j  popo GG  , (5.68) 

1)( poA  , (5.69) 

 )( go . (5.70) 
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Fig. 5.15 Nyquist plots Go(jω) for stable open-loop and pro q = 1 and q = 2  
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Fig. 5.16 Gain margin mA and phase margin γ  

It is obvious that the simple analytical formulation of the Nyquist stability 

criterion (5.68) – (5.70) applies to unconditionally stable control systems. For 

conditionally stable control systems it can be easily extended. 

Very important indices can be defined on the basis of the angular frequencies ωg 

and ωp (Fig. 5.16):  

the gain margin  

)(
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po

A
A

m


  (5.71) 

and the phase margin  

)( go   . (5.72) 

The gain margin mA expresses how many times the value of Ao(ωp) can be 

increased (how many times the open-loop gain ko can be increased) in order for the 

control system to reach the stability boundary. Similarly, the phase margin γ expresses 

how much the phase φo(ωg) (in the absolute value) can be increased in order for the 

control system to reach the stability boundary.  

Since the controller integral component brings into the open-loop of the control 

system a negative phase, i.e. it reduces the phase margin γ, therefore the controller 

integral component destabilizes (it deteriorates a stability) the control system. In 

contrast, the controller derivative component brings into the open-loop of the control 

system a positive phase, i.e. it increases the phase margin γ, therefore the controller 

derivative component stabilizes (it improves a stability) the control system (of course 

for a suitable filtration). 

As regards the controller proportional component, which is expressed by the 

controller gain KP, it is clear that by increasing the controller gain KP, the open-loop 

gain ko increases and thus reduces the gain margin mA, therefore the controller 
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proportional component destabilizes the control system. Conditionally stable control 

systems are an exception. 

The time delay is extremely dangerous for the stability of the control system. Its 

frequency transfer function has the form  

)(jj
e)(e)(j   AG dT




, (5.73a)) 

1)( A , (5.73b) 

 dT)( . (5.73c) 

From relations (5.73) it is obvious that the time delay does not change the 

modulus [see (5.73b)], but it linearly increases the negative phase by increasing angular 

frequency [see (5.73c)], i.e. it reduces the phase margin γ. Therefore, the time delay 

always significantly destabilizes the control system. 

The given formulations of the Nyquist stability criterion applies only to stable 

open-loop control system, and therefore it is necessary at first to check the stability of 

the open-loop control system and then to proceed to the verification of closed-loop 

control system stability. 

The Nyquist stability criterion for unstable control systems can be formulated in 

the form: 

"The linear control system is (asymptotically) stable if and only if when the 

Nyquist plot Go(jω) of the unstable open-loop control system with p unstable poles 

surrounds the critical point (-1 + j0) in the positive direction (counter-clockwise) p/2 

times (i.e. pπ).” 

Example 5.1 

The characteristic polynomial of the control system has the form 

01
2

2)( asasasN  . 

On the basis of the Hurwitz stability criterion it is necessary to determine the 

conditions for the coefficients a0, a1 and a2, which ensure the stability of the control 

system. 

Solution: 

a) From the necessary Stodola condition it follows: a0 > 0, a1 > 0, a2 > 0. 

b) The Hurwitz matrix for n = 2 has the form 











02

1 0

aa

a
H . 

Because the Hurwitz minor Hn–1 = a1 > 0, it is obvious that for the characteristic 

polynomial of the second degree the Stodola condition for the existence and 

nonnegativity of the coefficients a0 > 0, a1 > 0 and a2 > 0 is a necessary and a sufficient 

condition for the (asymptotic) stability of the control system. 
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Example 5.2 

For the control system in Fig. 5.17 on the basis of the Hurwitz stability criterion it 

is necessary to mark out the stable region in an adjustable controller parameter plane 

(KP,TI), (k1 > 0, T1 > 0).  

 

Fig. 5.17 Block diagram of the control system – Example 5.2 

Solution: 

In accordance with Fig. 5.17 the open-loop control system transfer function is 

given by the relation  

)(

)(

)1(

)1(
)()()(

1
2

1

sN

sM

sTsT

sTkK
sGsGsG

o

o

I

IP
PCo 




 . 

The characteristic polynomial of the control system has the form  

11
23

1)()()( kKsTkKsTsTTsMsNsN PIPIIoo  . 

a) From the Stodola necessary condition it follows:  

0,0  IP TK . 

b) The Hurwitz matrix for n = 3 has the form 



















1

11

1

0

0

0

kKT

TkKTT

kKT

PI

IPI

PI

H . 

It is enough to verify the positivity of the Hurwitz minor  

111

11

1

2 0)( TTTTTkK
TkKTT

kKT
H IIIP

IPI

PI
 . 

The stable region in the adjustable controller parameter plane (KP,TI) determines 

the last inequality TI > T1 and the condition KP > 0. The equality KP = 0 determines the 

nonoscillating stability boundary and the oscillating stability boundary is given by the 

equality TI = T1 (Fig. 5.18). 











sT
K

I

P

1
1  

)(sW  )(sU  

)(sV  

)(sY  

)1( 1

1

sTs

k
 

)(sGC  )(sGP  
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Fig. 5.18 Stable region for control system in Fig. 5.17 – Example 5.2  

Example 5.3 

For the control system in Fig. 5.17 (Example 5.2) on the basis of the Mikhailov 

stability criterion it is necessary to mark out the stable region in an adjustable controller 

parameter plane (KP,TI), (k1 > 0, T1 > 0).  

Solution: 

The characteristic polynomial N(s) was already determined in Example 5.2  

11
23

1)( kKsTkKsTsTTsN PIPII  . 

and therefore the Mikhailov function has the form  

.)()(

,)(

),(j)(

j)(j)(j)()(j

2
11

2
1

11
23

1j










TkKTN

TkKN

NN

kKTkKTTTsNN

PIQ

IPP

QP

PIPIIs










 

In accordance with the analytical formulation of the Mikhailov stability criterion 

(5.62) we can write  

.0

,,00)(

1
2

2
1

1

1
31

2
11

I

P
IP

P
PI

T

kK
TkK

T

kK
TkKT









 

For the roots of the imaginary part NQ(ω) and real part NP(ω) of the Mikhailov 

function the inequalities 

1

1
3

1
21 0

T

kK

T

kK P

I

P   , 

must hold. From these inequalities there is obtained 

boundarystability 

 tingNonoscilla
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1

1

11 TT
T

kK

T

kK
I

P

I

P  . 

This inequality together with the Stodola necessary condition of the nonnegativity 

of the coefficients of the characteristic polynomial N(s), i.e. KP > 0 and TI > 0 give us 

the same stable region as in Example 5.2 (Fig. 5.18). 

Example 5.4 

On the basis of the Nyquist stability criterion for the control system with the time 

delay in Fig. 5.19 it is necessary to determine the integral time TI, which ensures the 

(asymptotic) stability (k1 > 0). 

 

Fig. 5.19 Block diagram of the control system – Example 5.4  

Solution: 

In accordance with Fig. 5.19 the open-loop control system transfer function has 

the form 

sT

I

PCo
d

sT

k
sGsGsG


 e)()()( 1 . 

The open-loop control system contains one integrating element (the controller), 

and therefore it can be considered as stable. 

The frequency open-loop control system transfer function is given by the relation  

,e)(

eeje
j

)()(j

)(j

2
j

1j1j1
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  
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









2
)(,)( 1 


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I

o T
T

k
A . 

For rewriting the above relation the property 

2
j

ej
j

1




  

was used. 

In order for the stability of the control system it must hold [see (5.69) and (5.65)] 
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
d

I

Tk
T 12

   

the oscillating stability boundary is obtained, for which relation ωp = ωg = ωc holds 

(Fig. 5.20).  

 

Fig. 5.20 Stable region for the control system in Fig. 5.19 – Example 5.4  

Example 5.5 

The two transfer functions are given 

1

1
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)(1




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1

1
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




s

s

sU

sY
sG . 

It is necessary to analyze the ideal and the real reduction (cancellation) of the 

binomials in these transfer functions. 

Solution: 

In control theory we usually use the word cancellation or compensation instead 

of the word reduction. 

In the case of the transfer function G1(s) the stable pole 11 s cancels the stable 

zero 10
1 s  (the roots of the numerator = zeros, the roots of the denominator = poles). 

In the case of the transfer function G2(s) the unstable pole 11 s cancels the unstable 

zero 10
1 s .  
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a) The ideal cancellation 
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In the case of the ideal cancellation the same terms are reduced in the denominator 

and numerator, and therefore the step responses h1(t) and h2(t) are identical. 

b) The real cancellation (ε – small number) 

.e1)e1)(1(e

)1(

1
L

1

1
L)(

1
L)(

,
1

1

11

)1(

)(

)(
)(

11
1

1
1

1

ttt

---

sss
sG

s
th

ss

s

s

s

sU

sY
sG

 























































 




1)(lim 1 th
t

. 

,e1)e1)(1(e

)1(

1
L

1

1
L)(

1
L)(

,
1

1

11

)1(

)(

)(
)(

11
2

1
2

2

ttt

---

sss
sG

s
th

ss

s

s

s

sU

sY
sG

























































 




)(lim 2 th
t

. 

For the real cancellation of the stable binomials the step response is slightly 

different from the step response for the ideal cancellation. The difference depends on 

the size and sign of the small number ε. In contrast, in the case of the real cancellation 

of the unstable binomials the step response is always unstable. 

The unstable terms in the transfer functions must not be cancelled. The 

uncontrollable and unobservable modes arise for the cancellation of the unstable terms 

and it causes instability.  



VÍTEČEK, A., VÍTEČKOVÁ, M. Closed-Loop Control of Mechatronic Systems 

 

101 

6 CLOSED-LOOP CONTROL SYNTHESIS 

6.1 Control performance 

The simplest way to a control performance assessment is on the basis of the step 

responses caused by input variables. In Chapter 5 it was said that by ensuring the 

suitable control system properties considering the desired variable w(t), then the suitable 

properties generally will be ensured for the disturbance variables v(t) and v1(t) too. For 

the 1DOF conventional controller and disturbance v1(t) which is applied to the plant 

output, that always holds. 

Two exemplary control system step responses (servo responses, set-point 

responses) are shown in Fig. 6.1.  

 

Fig. 6.1 Control system step responses with marked control performance indices  

From a practical point of view, the most important performance indices are the 

relative overshoot κ and the settling time ts (Fig. 6.1). The relative overshoot is 

defined by the relation  

)(,
)(

)(
mm

m tyy
y

yy





 , (6.1) 

where ym is the maximum value of the controlled variable (the first peak), tm – the time 

of reaching the value ym (the peak time), y(∞) – the steady-state value of the controlled 

variable. 
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The settling time ts is given by the time, when the controlled variable y(t) gets in 

the band with width 2Δ, i.e. y(∞)  Δ, where the control tolerance is given 

05.001.0),(   y         (1   5) %. (6.2) 

The relative control tolerance δ has most frequently the value 0.05 or 0.02. 

For the settling time ts the value of the relative control tolerance δ must be always 

given. If it is not specified, then it is assumed that δ = 0.05 (5%). 

The case κ = 0 corresponds to a nonoscillatory control process, which is required 

for processes where overshoot may cause undesirable effects (they are mainly thermal 

and chemical processes, but also the movements of assembly robots and manipulators, 

etc.). 

For a nonoscillatory control process a minimum of the settling time ts is often 

required. Such a control process is called the marginal nonoscillatory control process. 

For κ > 0 the control process is oscillatory and it is faster than the nonoscillatory 

one. The rate of increase of the controlled variable y(t) can be measured using the rise 

time tr. It is the time at which the controlled variable y(t) reaches the steady-state value 

y(∞). Most often the rise time tr is defined as the time required for the response to go 

from 0.1 y(∞) to 0.9 y(∞). In this way the defined index of the rate of increase 

controlled variable y(t) is applicable to both oscillatory and nonoscillatory control 

processes and even for processes with time delay. 

The control process with the relative overshoot κ about 0.05 (5%) is acceptable 

for most plants and processes. If the minimum of the settling time ts is at the same time 

ensured, then such control process is often regarded as “practically optimal”. It is 

widely used wherever small overshoot does not matter or is desirable, e.g. for pointer 

type measuring and recording instruments (in this case the small overshoot enables a 

faster interpolation of a pointer position).  

Since the plant is always continuous, therefore, the control process performance is 

frequently assessed for the continuous (analog) control system.  

The integral criteria are very suitable for a complex evaluation of the control 

process performance. 

It is obvious that if the given integral criterion will be smaller, then the control 

performance will be higher. In order to not operate with the two variables y(t) and w(t), 

it is suitable to operate only with the control error e(t) = w(t) – y(t) and it is assumed that 

e(∞) = 0. If e(∞) ≠ 0, then in all relations for the integral criteria the term e(t) – e(∞) 

must be substitute in lieu e(t).  

Integral of error 





0

d)( tteI IE . (6.3a) 

The integral of error IIE (IE = integral of error) is the simplest integral criterion.  

It is not suitable for oscillatory processes, because IIE = 0 for the control process 

on the oscillating stability boundary. Its best advantage is that it can be easily computed 

(see Appendix A) 
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







00
00

d)(de)(lim)(lim ttettesEI st

ss
IE . (6.3b) 

Integral of absolute error 





0

d)( tteI IAE . (6.3c) 

The criterion of the absolute error IIAE (IAE = integral of absolute error) removes 

the disadvantages of the previous integral criterion IIE, and therefore it is applicable to 

both the nonoscillatory and the oscillatory control processes. However, it has a very 

unpleasant behaviour consisting in the fact that in the points where e(t) changes sign the 

derivative is not defined. Therefore the value of this criterion cannot be calculated 

analytically but only numerically or by simulations. 

Integral of squared error 





0

2 d)( tteI ISE . (6.3d) 

The criterion of the squared error IISE (ISE = integral of squared error) removes 

the disadvantages of the two previous integral criteria IIE and IIAE, because it is also 

applicable for the oscillatory control process and its value can be determined 

analytically [the course e
2
(t) is smooth], but the resulting control process is too 

oscillating. Its use is appropriate in those cases, when the desired variable w(t) or the 

disturbance variable v(t) have a random character.  

ITAE criterion 





0

d)( ttetI ITAE . (6.3e) 

The ITAE integral criterion IITAE (ITAE = integral of time multiplied by absolute 

error) contains the time and the control error, and therefore it simultaneously minimizes 

both the error and the settling time ts. It is a very popular integral criterion, although in 

the case of oscillatory courses its value can be determined only numerically or by 

simulation. 

The most important integral criteria were briefly described. The values of the 

controller adjustable parameters can be determined by their minimization, which is 

often done by simulation. 

The steady-state errors are the important control performance index. These 

errors can be caused by the input standard testing signals, which have the forms: the 

step input, the ramp input (it is the integral of the step input) and the parabolic input (it 

is the integral of the ramp input).  

The overall control error is given by (5.10) 

)()()()(
1

sEsEsEsE vvw  , 

where 

)()()(),()()(),()()( 111
sVsGsEsVsGsEsWsGsE evvvevwew  , 

are partial control errors caused by the corresponding input variables. 
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Because the equality  

)()(
1

sGsG evwe  , 

holds [see (5.11) and (5.13)] it is worth considering only the control errors caused by 

the desired variable w(t) and the disturbance variable v(t) in the plant input. 

The standard testing signals are: 

the step input 

s

v
sVtvtv

s

w
sWtwtw 0

0
0

0 )(ˆ)()(,)(ˆ)()(   , (6.4) 

the ramp input 

2
1

12
1

1 )(ˆ)()(,)(ˆ)()(
s

v
sVttvtv

s

w
sWttwtw   , (6.5) 

the parabolic input 

3
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2 )(ˆ)(
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1
)(,)(ˆ)(

2

1
)(

s

v
sVttvtv

s

w
sWttwtw   . (6.6) 

On the basis of the final value theorem it is possible to compute the steady-state 

control errors  

)(lim)(lim)(),(lim)(lim)(
00

ssEteessEtee v
s

v
t

vw
s

w
t

w


 . (6.7) 

From the frequency control system transfer function (5.17) the modulus 

(magnitude) or logarithmic modulus can be obtained  

)(log20)(or)(j)(jmod)(  wywywywywy ALGGA  . (6.8) 

The typical course of the control system magnitude response Awy(ω) is shown in 

Fig. 6.2. From Fig. 6.2 some of the control performance indices can be obtained: 

A
wy

(ωR) – the peak resonance (the resonant magnitude), ω
R
 – the resonant angular 

frequency, ω
b
 – the cut-off angular frequency. 

For the well-tuned control system it is recommended that the relations 

dB)8.0()(or1.1)( 3.51.5  RwyRwy LA  . (6.9) 

would hold [2, 4, 9, 10, 22, 29]. 

A too high value of the peak resonance gives a high oscillation and significant 

overshoots. 

The cut-off angular frequency ωb determines the width of the control system 

operating bandwidth, i.e. the range of operating angular frequencies. The higher value 

enables the control system to better process higher angular frequencies. Its value is 

given by a decrease of the modulus Awy(ω) [Lwy(ω)] on the value 

)0(707.0)0(
2

1
wywy AA   [Lwy(0) – 3 dB] and for the big peak resonance Awy(ωR) by an 

increase the modulus Awy(ω) [Lwy(ω)] on the value )0(414.1)0(2 wywy AA   

dB]3)0([ wyL .  



VÍTEČEK, A., VÍTEČKOVÁ, M. Closed-Loop Control of Mechatronic Systems 

 

105 

From the magnitude response Awy(ω) the control system type q can be determined, 

because the relations hold  

10)0(or1)0(  qLA wywy , (6.10) 

00)0(or1)0(  qLA wywy . (6.11) 

 

Fig. 6.2 Control system magnitude response 

The control system type q can be determined on the basis of the frequency 

response of the open-loop control system (the Nyquist plot) Go(jω) for ω → 0, see. Figs 

5.15 and 5.16. 

The gain crossover angular frequency ωg and the phase crossover angular 

frequency ωp are given by the relations [see (5.64) and (5.65)] 

1)( goA   (6.12) 

 )( po , (6.13) 

where 

)(j)(jmod)(  ooo GGA   (6.14) 

is the modulus of the frequency response of the open-loop control system and 

)(jarg)(  oo G  (6.15) 

is the phase of the frequency response of the open-loop control system. 

For the oscillating stability boundary the equalities hold [see (5.67)] 

pgc   , (6.16) 

where ωc is the ultimate angular frequency. 

From the Nyquist plot very important control performance indices can be 

determined, like the gain margin mA and the phase margin γ (see Figs 5.15 and 5.16). 

For common control systems the following values are recommended  
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dB)14(log20or5  62 ALA mmm , (6.17) 











3
60




6

π
30 . (6.18) 

The bold values should not be in any case exceeded [2, 4, 9, 10, 13, 22, 24, 29]. 

 

Fig. 6.3 Block diagram of the control system 

The frequency transfer functions Gwy(jω) and (j
1yvG  [see Fig. 6.3 and relations 

(5.3), (5.5)] have for the automatic control theory essential importance and therefore 

they are also written by special symbols T(jω) and S(jω) and they have special names. 

From equation (5.5) it follows 

1)(j)(j1)(j)(j
1

  STGG yvwy . (6.19) 

The function S(jω) is called the sensitivity function and the function T(jω) the 

complementary sensitivity function. 

The name of the sensitivity function S(jω) follows from the following 

considerations (Fig. 6.3). 

From the relation 

)(j
)(j)(j1

)(j)(j
)(j)(j)(j 




 W

GG

GG
WGY

PC

PC
wy


  (6.20) 

for W(jω) = constant we get 

)(j

)(jd

)(j

)(jd









wy

wy

G

G

Y

Y
 , (6.21) 

i.e. the relative change of the controlled variable (its transform) is equal to the relative 

change of the control system properties (its transfer function). Similarly, from (6.20) the 

relationship is derived  














)(j

)(jd

)(j

)(jd

)(j)(j1

1

)(j

)(jd













P

P

C

C

PCwy

wy

G

G

G

G

GGG

G
, 

or 











)(j

)(jd

)(j

)(jd
)(j

)(j

)(jd

)(j

)(jd


















P

P

C

C

wy

wy

G

G

G

G
S

G

G

Y

Y
, (6.22) 

which expresses the influence of the relative changes in the properties of the controller 

(its transfer function) and the plant (its transfer function) on the relative change of the 

)(1 sV  

)(sE  )(sY  

)(sGP  

)(sW  )(sU  

)(sGC  
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control system properties (its transfer function), and thus on the relative change of the 

controlled variable (its transform). From relation (6.22) it is clear that this influence 

expresses just the sensitivity function S(jω). For its lower value the lower influence of 

the relative changes of the controller and the plant properties will be on the relative 

change of the control system properties, and hence the relative change of the controlled 

variable.  

The sensitivity function S(jω) therefore expresses the sensitivity of the control 

system to very small mostly unspecified changes of the control system elements. 

A typical course of the sensitivity function modulus )(jmod)(j  SS  is shown 

in Fig. 6.4. The scale of the angular frequency ω is usually logarithmic. 

The maximum value of the sensitivity function modulus  

)(j)(j1

1
max)(jmax

00 



PC

S
GG

SM





 (6.23) 

has a very important interpretation. 

 

Fig. 6.4 Course of sensitivity function modulus  

The inverted value of the maximum of the sensitivity function modulus 1/MS is 

exactly the shortest distance of the Nyquist plot Go(jω) to the critical point (–1 + j0), see 

Fig. 6.5. 

The value MS for a well-tuned control system should not be greater than 2 and it 

ought be in the range [2, 13, 22, 29] 

2 SM4.1 . (6.24) 

The maximum of the sensitivity function modulus MS can be used to estimate the 

gain and the phase margin, because the inequalities hold 
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1


S

S
A

M

M
m , (6.25) 

SM2

1
arcsin2 . (6.26) 

 

  



mA 



g 





Ms 

Goj
q 

0  

p  

Im 

Re 

 

Fig. 6.5 Geometrical interpretation of the maximum of sensitivity function modulus MS 

The maximum of the sensitivity function modulus MS is a complex control 

performance index, because from the relations (6.25) and (6.26) it follows that for 

MS ≤ 2 the gain margin mA ≥ 2 and the phase margin γ > 29 will be ensured. Similarly 

for MS ≤ 1.4 the inequalities mA ≥ 3.5 and γ > 42° hold. The opposite statement is not 

valid, i.e. the values mA and γ do not guarantee the corresponding value MS [2, 13]. 

Another great advantage of the maximum of the sensitivity function modulus MS 

is that it can be used to express the slopes of the sector nonlinearity (Fig 6.6) 

 






1

)(

1 1

1

S

S

S

S

M

M

u

uf

M

M
, (6.27) 

in which the control system with nonlinearity (Fig. 6.7) is asymptotically stable [2, 13]. 

Nonlinearities or a time-varying gain often appears in real control systems. These 

cases can be described by the sector nonlinearity 

0)0(),( 12  fufu , 

which crosses through the origin and it is defined by the lines of the slopes α and β (Fig. 

6.6) 

 
1

1
111

)(
0)(0

u

uf
uufu . (6.28) 
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Fig. 6.6 Nonlinearity in sector (α, β) 

The actuator is nonlinear in the majority of cases, see Fig. 6.7a. For the purpose of 

stability verifying the block diagram in Fig. 6.7a can be modified in the block diagram 

in Fig. 6.7b.  

a) 

b) 

 

Fig. 6.7 Control system with segment nonlinearity: a) original, b) modified 

The stability of the control system with the sector nonlinearity may be verified on 

the basis of the circle stability criterion: “The control system with the nonlinearity in 

the sector (α, β) is asymptotically stable if the frequency response (the polar plot) of the 

stable linear part with the transfer function  

)()()( 21 sGsGsG   (6.29) 

passes on the right side of the circle which crosses through the points 


1
 , 



1
  and 

which has the centre on the negative half-axis (Fig. 6.8) [13]. 

)( 12 ufu   

12 uu   

2u  

1u  

12 uu   

)(1 sG  )(2 sG  

 

1u  2u  
)(2 sG  )(1 sG  
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Fig. 6.8 Geometrical interpretation of circle stability criterion  

It is obvious that for 0   and )()( sGsGo   the circle stability criterion 

converts into the Nyquist stability criterion for the stable open-loop control systems. 

For instance on the basis of (6.27) for MS = 2 the slopes α = 0.67 and β = 2 of the 

sector nonlinearity can be obtained, similarly for MS = 1.4 the slopes α = 0.58 and β = 

3.5 can be obtained. 

With the sensitivity or the insensitivity of the control system to very small 

changes in the properties of its elements there is a very close relation to the robustness 

of the control system, which is its ability to hold the control objective for the larger, 

mostly quantitatively defined, changes of the properties mostly of the plant (or other 

control system elements) and for some decrease of the control performance, but always 

ensuring its stability. For instance the maximum of the sensitivity function modulus MS 

determines the sector (α, β) for the nonlinearity or time-varying gain that does not cause 

loss of the stability, i.e. the MS expresses in a certain way the robustness of the control 

system for the sector nonlinearity or the time-varying gain in the sector (α, β). 

6.2 Controller tuning 

At present, there are a huge number of different controller tuning methods [1 – 11, 

13 – 15, 17, 19 – 31]. Only some selected controller tuning methods will be described 

here, which are based on closed-loop control system properties (Paragraphs 6.2.1 – 

6.2.4) and on the knowledge of the plant mathematical model (Paragraphs 6.2.5 – 

6.2.10). 

6.2.1 Ziegler-Nichols closed-loop method 

The ZN (Ziegler-Nichols) closed-loop method (the ZN ultimate parameter 

method) comes from the real control system for shutting down the integral (TI → ∞) and 

the derivative (TD → 0) components and the oscillatory stability boundary caused by the 

controller gain KP [2, 4, 17, 22, 29, 31]. 

For the oscillating stability boundary the ultimate (critical) period Tc and the 

ultimate (critical) controller gain KPc are determined from any control system variable 

(see Fig. 6.9) and from the controller. It is obvious that the ultimate gain KPc is 

determined iteratively. 

The values of the adjustable parameters for the selected controller are calculated 

on the basis of Tab. 6.1 

For the P controller the gain margin mA = 2. 



1
  

)(jG  

0  Re    



1
  

Im  
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Fig. 6.9 Determination of ultimate period Tc 

The destabilizing influence of the integral component in the PI controller is 

expressed by decrease of *
PK  in comparison with the P controller and the stabilizing 

influence of the derivative component (with an appropriate filtration) in the standard 

PID controller is expressed by increase of *
PK  (compare with Tab. 6.4). The ratio 

*
DT / *

IT  = 1/4. 

Tab. 6.1 Controller adjustable parameters for the Ziegler-Nichols closed-loop method  

(ZN closed-loop method) 

Controller *
PK  *

IT  *
DT  

P PcK5.0  – – 

PI PcK45.0  c
c T

T
83.0

2.1
  – 

PID PcK6.0  cT5.0  cT125.0  

 

The ZN closed-loop method is also applicable for the I controllers. In this case, 

the control system is brought up on the oscillating stability boundary by decreasing the 

integral time TI. When the oscillating stability boundary occurs then the ultimate 

integral time TIc is determined and for the tuning the value  

IcI TT 2*   (6.30) 

is used. 

Even in this case, the gain margin mA = 2. 

We choose  

IcI TT )64(*   (6.31) 

if the nonoscillatory control process is required. In this case the gain margin is  

mA = 4 – 6 [22, 29]. 
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The ZN closed-loop method is particularly advantageous because it does not 

assume any knowledge of the plant properties and it is operating with the real plant and 

the controller. Its major disadvantage is that it must bring the control system to the 

oscillating stability boundary, i.e. the control system must oscillate, which could cause 

the plant damage or its nonlinear properties can arise.  

Its other disadvantage is that it is too aggressive, which follows from the 

requirement of the quarter-decay ratio, see Fig. 6.10. After controller tuning by the ZN 

closed-loop method the real overshoot is from 10 % to 60 %, at an average for the 

various plants around 25 %. The controller tuning by the ZN closed-loop method is 

suitable for a stabilizing control in the case when disturbance variable v(t) influences the 

plant input. 

Procedure: 

1. All connections of the control system and the functionality of all its elements must 

be checked.  

2. The desired variable (set-point) value w(t) is set and in the manual mode y(t) ≈ 

w(t) is set too, the integral component (TI → ∞) and the derivative component 

(TD → 0) are shut down, the controller gain KP is decreased and the controller is 

switched to the automatic mode.  

3. The controller gain KP is subsequently increased as for a small change of the 

desired variable w(t) the stable oscillation arises which corresponds to the 

oscillating stability boundary.  

4. From the periodic course of any control system variable the ultimate period Tc and 

from the P controller settings – the ultimate gain KPc are determined. 

5. For the chosen controller on the basis of Tab. 6.1 (Tab. 6.2 – Tyreus-Lyuben) the 

values of the adjustable parameters are determined.  

6.2.2 Tyreus-Lyuben method 

The procedure for controller tuning by this method is the same as for the ZN 

closed-loop method. The values of the adjustable parameters are determined on the 

basis of Tab. 6.2 [2, 17, 22, 29]. From a comparison of the Tabs 6.1 and 6.2 it follows 

that the TLM (Tyreus-Lyuben method) is very conservative. 

Tab. 6.2 Controller adjustable parameters for the Tyreus-Lyuben method (LTM) 

Controller *
PK  *

IT  *
DT  

PI PcK31.0  cT2.2  – 

PID PcK45.0  cT2.2  c
c T

T
16.0

3.6
  

 

6.2.3 Quarter-decay method 

The QDM (quarter-decay method) is a modification of the ZN closed-loop 

method. In contrast to it this method does not assume control system oscillation on the 

stability boundary and therefore it operates in the linear region and it can be used for 

more plants [22, 29].  
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Tab. 6.3 Controller adjustable parameters for the quarter-decay method (QDM) 

Controller *
PK  *

IT  *
DT  

P 4/1PK  – – 

PI 4/19.0 PK  4/1T  – 

PID 4/12.1 PK  4/16.0 T  4/115.0 T  

 

Procedure: 

1. and 2. The same steps like for the ZN closed-loop method. 

3. The controller gain KP is subsequently increased until the step response y(t) 

caused by the desired variable w(t) has such a course that the ratio of two 

consecutive amplitudes is equal to 1/4, see Fig. 6.10.  

4. The time T1/4 is determined from the step response y(t) and the controller gain 

KP1/4 is read from the P controller.  

5. For the chosen controller on the basis of Tab. 6.3 the values of its adjustable 

parameters are determined.  

 

 

Fig. 6.10 Control system tuning by the quarter-decay method (QDM) 

6.2.4 Good gain method 

The GGM (good gain method) is similar to the ZN closed-loop method and is 

described in [6, 29].  

Procedure: 

1. and 2. The same steps like for the ZN closed-loop method. 

3. The controller gain KP is subsequently increased until the step response y(t), 

caused by the desired variable w(t), has the course with the overshoot and the 
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observable undershoot (Fig. 6.11). This course corresponds to the controller gain 

KPGG. The step of the desired variable w(t) does not cause a nonlinear behaviour, 

i.e. especially a saturation.  

4. The integral time is set to the value  

ouI TT 5.1*   (6.32) 

and the controller gain is set to the value  

PGGP KK 8.0*  . (6.33) 

The time Tou is determined in accordance with Fig. 6.11. 

5. In case of using the derivative component the derivative time is set to the value 

** 25.0 ID TT  . (6.34) 

When the noise appears or the manipulated variable u(t) is too active, then the use 

of the derivative component is not suitable and it must be shut down.  

6. The final desired course of the controlled variable y(t) is obtained by fine tuning 

of the controller gain KP, or the integral time constant TI.  

 

Fig. 6.11 Control system tuning by the good gain method (GGM) 

A certain advantage of the GGM is that for the slightly oscillating course the first 

undershoot can be determined better than the second overshoot. 

The GGM is based on the following considerations [6]. 

It is assumed that the closed-loop control system has the properties that can be 

expressed by the transfer function 

12

1
)(

22 


sTsT
sG

www

wy


. (6.35) 

The relative damping ξw = 0.6 causes the relative overshoot κ ≈ 0.1 (10 %) and the 

small observable undershoot. The period of the damped oscillation is 
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


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The control system with the transfer function (6.35) will be on the oscillating 

stability boundary for ξw = 0 with the ultimate period 

wc TT 2 . 

The relation between the time Tou of a damped oscillation for the GGM and the 

ultimate period Tc of the undamped oscillations is 

ouGGc TTT 6.18.0  . 

For the ZN closed-loop method the relation  

ou
ouc

I T
TT

T 33.1
2.1

6.1

2.1
  

holds (see Tab. 6.1). 

Because the controller tuning by the ZN closed-loop method is too aggressive, 

therefore the value  

ouI TT 5.1*   

is chosen.  

For the ZN closed-loop method the PI controller gain *
PK  is a 0.9 multiple of the 

P controller gain *
PK . Since the integral component destabilizes the control system, the 

controller gain KPGG should therefore be decreased, i.e. 

PGGP KK 8.0*  . 

It is obvious that the above mentioned GGM is only applicable to plants which 

can oscillate with the P controller in accordance with Fig. 6.11.  

Example 6.1 

For the plant with the transfer function 

3)14(

5.1
)(




s
sGP  

it is necessary to tune suitable controllers by the (the time constant is in seconds): 

a) ZN closed-loop method,  

b) TLM, 

c) QDM, 

d) GGM. 
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Solution: 

a) The experimental ZN closed-loop method 

 

Fig. 6.12 Responses for the control system tuned by the ZN closed-loop method – 

Example 6.1  

After shutting down the integral and the derivative components the controller gain 

KP  was subsequently increased until for a small change of the desired variable w(t) the 

oscillating stability boundary was obtained. From the P controller the ultimate gain 

KPc = 5.3 was read and from the periodic course the ultimate period Tc = 14.5 s was 

obtained. On the basis of Tab. 6.1 the values of the adjustable parameters for chosen 

controllers were calculated: 

P: 65.25.0*  PcP KK ; 

PI: 39.245.0*  PcP KK ; s 04.1283.0*  cI TT ; 

PID: 18.36.0*  PcP KK ; s 25.75.0*  cI TT ; s 81.1125.0*  cD TT . 

The responses y(t) for the control system with different controllers tuned by the 

ZN closed-loop method are shown in Fig. 6.12.  

b) The experimental TLM 

For the ultimate parameters KPc = 5.3 and Tc = 14.5 s obtained in the previous 

point a) on the basis of Tab. 6.2 the values of the adjustable parameters for chosen 

controllers were calculated: 

PI: 64.131.0*  PcP KK ; s9.312.2*  cI TT ; 

PID: 39.245.0*  PcP KK ; s 9.312.2*  cI TT ; s 32.216.0*  cD TT . 
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The responses y(t) for the control system with different controllers tuned by the 

TLM are shown in Fig. 6.13.  

 

 

Fig. 6.13 Responses for the control system tuned by TLM – Example 6.1 

c) The experimental QDM 

After shutting down the integral and the derivative components the controller gain 

KP  was subsequently increased until the step response y(t) caused by the desired 

variable w(t) had the course with the ratio B/A ≈ 1/4 (Fig. 6.10). From the P controller 

the gain KP1/4 = 1.9 was read and from the step response y(t) the time T1/4 = 20.5 s was 

obtained. On the basis of Tab. 6.3 the values of the adjustable parameters for chosen 

controllers were calculated: 

P: 9.14/1
*  PP KK ; 

PI: 71.19.0 4/1
*  PP KK ; 5.204/1

* TTI ; 

PID: 28.22.1 4/1
*  PP KK ; s 3.126.0 4/1

*  TTI ; s 08.315.0 4/1
*  TTD . 

The responses y(t) for the control system with different controllers tuned by the 

QDM are shown in Fig. 6.14.  
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Fig. 6.14 Responses for the control system tuned by QDM – Example 6.1 

d) The GGM 

After shutting down the integral and the derivative components the controller gain 

KP was subsequently increased until the step response y(t) caused by the desired 

variable w(t) had the course with the overshoot and the observable undershoot in 

accordance with Fig. 6.11. From the P controller the gain KPGG = 1.5 was read and from 

the step response y(t) the time Tou = 11.6 s was obtained. The values of the adjustable 

parameters were determined on the basis of relations (6.32) – (6.34):  

 

Fig. 6.15 Responses for the control system tuned by GGM – Example 6.1 
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PI: 2.18.0*  PGGP KK ; s 6.175.1*  ouI TT ; 

PID: 2.18.0*  PGGP KK ; s 6.175.1*  ouI TT ; s 4.425.0 **  ID TT . 

The responses y(t) for the control system with different controllers tuned by the 

GGM are shown in Fig. 6.15.  

Although on the basis of one plant the described experimental controller tuning 

methods cannot be objectively assessed, it is clear that the ZN closed-loop method gives 

an oscillating control process with large overshoots – the tuning is too aggressive. It 

generally does not ensure the stability. The TLM is less aggressive than the ZN closed-

loop method. The great disadvantage of both methods is that they need to bring the 

control system on the oscillating stability boundary, which is not allowed for most real 

control systems. Due to great steady-state control errors the P controller is unusable in 

this case. 

The remaining experimental methods are very simple and they give in most cases 

practically acceptable results. 

6.2.5 Ziegler-Nichols open-loop method 

The ZN open-loop method (the ZN step response method) is based on the 

nonoscillatory step response of the proportional plant. From the plant step response the 

(substitute) time delay Tu, the (substitute) time constant Tn and the plant gain k1 are 

determined in accordance with Fig. 4.5a. 

The values of the adjustable parameters for the selected controllers are given in 

Tab. 6.4 [2, 22, 29, 31]. 

Similarly like for the ZN closed-loop method the destabilizing influence of the 

integral component in the PI controller is expressed by a decrease of *
PK  in comparison 

with the P controller and the stabilizing influence of the derivative component (with an 

appropriate filtration) in the standard PID controller is expressed by an increase of *
PK  

(compare with Tab. 6.1). The ratio *
DT / *

IT  = 1/4. 

From Tabs 6.4 and 6.1 it follows that both ZN methods for the P controller ensure 

the gain margin mA = 2, that means the double increase of the controller gain *
PK  brings 

the control system on the oscillating stability boundary.  

Tab. 6.4 Controller adjustable parameters for the Ziegler-Nichols open-loop method  

(ZN open-loop method) 

Controller *
PK  *

IT  *
DT  

P 
u

n

Tk

T

1

 – – 

PI 
u

n

Tk

T

1

9.0  
uT33.3  – 

PID 
u

n

Tk

T

1

2.1  
uT2  uT5.0  
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The ZN open-loop method is generally more aggressive than the ZN closed-loop 

method [2]. 

Procedure: 

1. From the plant step response the time delay Tu, the time constant Tn and the plant 

gain k1 are determined (see Section 4.2, Fig. 4.5a).  

2. On the basis of Tab. 6.4 the values of the adjustable parameters for chosen 

controllers are calculated. 

Example 6.2 

From the plant step response with the transfer function (see Example 6.1) 

3)14(

5.1
)(




s
sGP  

its parameters were obtained by the experimental identification: Tu = 3.2 s, Tn = 14.8 s 

and k1 = 1.5. 

It is necessary to tune the P, PI and PID controllers by the ZN open-loop method.  

Solution: 

On the basis of Tab. 6.4 we can write: 

P: 08.3
1

*  
u

n
P

Tk

T
K ; 

PI: 78.29.0
1

*  
u

n
P

Tk

T
K ;    66.1033.3*  uI TT s;  

 

Fig. 6.16 Responses for control system tuned by the ZN open-loop method – Example 

6.2 
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PID: 08.32.1
1

*  
u

n
P

Tk

T
K ;   4.62*  uI TT s;   6.15.0*  uD TT s. 

The responses y(t) for the control system with different controllers tuned by the 

ZN open-loop method are shown in Fig. 6.16. We can see that the ZN open-loop 

method is really more aggressive than the ZN closed-loop method (compare with Fig. 

6.12). The P controller is unusable in this case too. 

6.2.6 „Universal“ experimental method 

From the many existing experimental controller tuning methods the very simple 

and in most practical cases effective method, here called the UEM ("universal" 

experimental method) is given below. It was developed in the former USSR [4, 9]. It is 

suitable for systems with transfer functions (Tabs 6.5 and 6.6) 

sT
P

d

sT

k
sG




 e

1
)(

1

1  (6.36) 

and 

sT
P

d

s

k
sG


 e)( 1 . (6.37) 

The UEM is quite similar to the Chien-Hrones-Reswick method [2]. 

The UEM enables conventional controller tuning both from the point of view of 

the desired variable w(t) (servo problem) and the disturbance variable v(t) (regulatory 

problem) which acts on the plant input for three control performance indices (criteria): 

the fastest response without overshoot, the fastest response with relative overshoot κ = 

0.2 (20 %) and the minimum of the integral of the squared error (ISE). Here the control 

process with the maximum relative overshoot from 0.02 (2 %) to 0.05 (5 %) is 

considered as the fastest response without overshoot. 

Procedure: 

1. The plant transfer function must be converted on one form (6.36) or (6.37) on the 

basis of the methods described in Section 4.2.  

2. According to the control performance requirements the suitable controller, the 

kind of control process (without the overshoot, with the overshoot 20 %, 

minimum of ISE) and the purpose (the servo or regulatory problem) are chosen 

and then on the basis of Tab. 6.5 for the plant transfer function (6.36) or Tab. 6.6 

for the plant transfer function (6.37) the values of the controller adjustable 

parameters are computed.  

Example 6.3 

For the plant with transfer function (see Examples 6.1 and 6.2) 

3)14(

5.1
)(




s
sGP  

it is necessary to tune the PI controller (the time constant is in seconds).  
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Tab. 6.5 Controller adjustable parameters for the “universal” experimental method 

(UEM) 

sTd

sT

k 


e

11

1  
Control process 

Fastest response without 

overshoot 

Fastest response with 

overshoot 20 %  

Minimum of 

ISE 

Controller 

Tuning from the point of view 

Desired 

variable w 

Disturbance 

variable v 

Desired 

variable w 

Disturbance 

variable v 

Disturbance 

variable v 

P *
PK  

dTk

T

1

13.0  
dTk

T

1

13.0  
dTk

T

1

17.0  
dTk

T

1

17.0  – 

PI 

*
PK  

dTk

T

1

135.0  
dTk

T

1

16.0  
dTk

T

1

16.0  
dTk

T

1

17.0  
dTk

T

1

1  

*
IT  

117.1 T  15.08.0 TTd   
1T  13.0 TTd   135.0 TTd   

PID 

*
PK  

dTk

T

1

16.0  
dTk

T

1

195.0  
dTk

T

1

195.0  
dTk

T

1

12.1  
dTk

T

1

14.1  

*
IT  

1T  dT4.2  
136.1 T  dT2  dT3.1  

*
DT  

dT5.0  dT4.0  dT64.0  dT4.0  dT5.0  

 

Tab. 6.6 Controller adjustable parameters for the “universal” experimental method 

(UEM) 

sTd

s

k 
e1  

Control process 

Fastest response without 

overshoot 

Fastest response with 

overshoot 20 % 

Minimum of 

ISE 

Controller 

Tuning from the point of view 

Desired 

variable w 

Disturbance 

variable v 

Desired 

variable w 

Disturbance 

variable v 

Disturbance 

variable v 

P *
PK  

dTk1

1
37.0  

dTk1

1
37.0  

dTk1

1
7.0  

dTk1

1
7.0  – 

PI 

*
PK  

dTk1

1
37.0  

dTk1

1
46.0  

dTk1

1
7.0  

dTk1

1
7.0  

dTk1

1
 

*
IT    dT75.5    dT3  dT3.4  

PID 

*
PK  

dTk1

1
65.0  

dTk1

1
65.0  

dTk1

1
1.1  

dTk1

1
1.1  

dTk1

1
36.1  

*
IT    dT5    dT2  dT6.1  

*
DT  

dT4.0  dT23.0  dT53.0  dT37.0  dT5.0  
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Solution: 

The plant transfer function GP(s) has not the desired form (6.36), and therefore in 

accordance with the scheme (4.37) and Tab. 4.1 we can write (i = 3, k1 = 2, T3 = 4 s, 

Td3 = 0 s):  

92.7498.1980.1 1

3

1  T
T

T
s; 

93.404232.1232.1 1

3

31 


d
dd T

T

TT
s; 

ssT
P

ssT

k

s
sG d 93.4

1

1

3
e

192.7

5.1
e

1)14(

5.1
)( 1 








 . 

The PI controller tuning from the point of view of the desired variable w(t) (Tab. 

6.5): 

a) without overshoot (0 %) 

37.035.0
11

1*  
d

P
Tk

T
K ;   27.917.1 1

*  TTI s; 

b) with overshoot 0.2 (20 %) 

64.06.0
11

1*  
d

P
Tk

T
K ;   92.71

* TTI s; 

The PI controller tuning from the point of view of the disturbance variable v(t)  

which acts on the plant input (Tab. 6.5): 

a) without overshoot (0 %) 

64.06.0
11

1*  
d

P
Tk

T
K ;   90.75.08.0 11

*  TTT dI s; 

b) with overshoot 0.2 (20 %) 

75.07.0
11

1*  
d

P
Tk

T
K ;   31.73.0 11

*  TTT dI s; 

c) minimum of ISE 

07.1
11

1*  
d

P
Tk

T
K ;   70.735.0 11

*  TTT dI s. 

The responses of the control system with the PI controller tuned by the UEM from 

point of view of the desired variable w(t) are shown in Fig. 6.17a and from point of 

view of the disturbance variable v(t)  which acts on the plant input are shown in Fig. 

6.17b. 

From both figures it is evident that the UEM gives acceptable results even for a 

very rough approximation of the plant transfer function. 

Example 6.4 

It is necessary to tune the PI controller by the UEM for the integrating plant with 

the transfer function 



VÍTEČEK, A., VÍTEČKOVÁ, M. Closed-Loop Control of Mechatronic Systems 

 

124 

a)  

 
b) 

 

Fig. 6.17 Responses of the control system with the PI controller tuned by the UEM from 

the point of view: a) desired variable w(t), b) disturbance variable v(t) – Example 6.3 

s
P

ss
sG 4e

)1(

05.0
)( 


 .  

The time constant and the time delay are in seconds.  
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Solution: 

The plant transfer function must be converted to the form (6.37). In accordance 

with the relation (4.44) for T1 = 1 s and Td1 = 4 s we can write: 

.e
05.0

e
)1(

05.0
)(

;s5

54

11

ss
P

dd

sss
sG

TTT

 






  

The PI controller tuning from the point of view of the desired variable w(t) (Tab. 

6.6): 

a) without overshoot (0 %) 

48.1
1

37.0
1

*  
d

P
Tk

K ;   *
IT ; 

b) with overshoot 0.2 (20 %) 

8.2
1

7.0
1

* 
d

P
Tk

K ;   *
IT . 

The PI controller tuning from the point of view of the disturbance variable v(t)  

which acts on the plant input (Tab. 6.6): 

a) without overshoot (0 %) 

84.1
1

46.0
1

*  
d

P
Tk

K ;   75.2875.5*  dI TT s; 

b) with overshoot 0.2 (20 %) 

8.2
1

7.0
1

* 
d

P
Tk

K ;   153*  dI TT s; 

c) minimum of ISE 

4
1

1

* 
d

P
Tk

K ,   5.213.4*  dI TT s. 

The responses of the control system with the PI controller tuned by the UEM are 

shown in Fig. 6.18. From Figure 6.18a it follows that regulatory responses are 

unacceptable. It is caused by a shut down of the integral component ( *
IT ) of the PI 

controller, which converts to the P regulator. Servo responses for integrating plants and 

for a conventional controller with an integrating component always contain very big 

overshoots which cannot be removed by any tuning [29, 30]. In our case see Fig. 6.18b. 

The unacceptable overshoots can be supressed by the use of a suitable input filter or a 

2DOF controller.  
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a) 

 
b) 

 

Fig. 6.18 Responses of the control system with the PI controller tuned by the UEM from 

the point of view: a) desired variable w(t), b) disturbance variable v(t) – Example 6.4 

6.2.7 SIMC method 

The SIMC method belongs among simple but effective controller tuning methods 

[20]. It is based on the internal model control – IMC (internal model control), and 

therefore its author suggests shortening the SIMC interpret as "Simple Control" or 
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"Skogestad IMC". Although the SIMC method is based on the IMC method for the 

controller design uses the formula for the direct synthesis (e.g. see Fig. 6.3) 

)(1

)(

)(

1
)(

sG

sG

sG
sG

wy

wy

P

C


 , (6.38) 

where 

sT
PP

dsGsG
 e)()(  (6.39) 

is the plant transfer function and  

sT

w

wy
d

sT
sG




 e

1

1
)(  (6.40) 

is the desired control system transfer function and Tw is the time constant of the closed-

loop control system.  

After substitution (6.39) and (6.40) in (6.38) the controller transfer function  

sT
wP

C
dsTsG

sG





e1

1

)(

1
)(  (6.41) 

is obtained. 

By the use of the approximation  

sTd
sTd 


1e  (6.42) 

the simplified controller transfer function  

sTTsG
sG

dwP

C
)(

1

)(

1
)(


  (6.43) 

is obtained. 

The controller design procedure will be shown for the plant with the transfer 

function  

21

21

1 ,e
)1)(1(

)( TT
sTsT

k
sG

sT
P

d 





. (6.44) 

It is obvious that 

)1)(1(
)(

21

1




sTsT

k
sGP ,  

and therefore after its substitution in (6.43) the controller transfer function 

 1
1

1
)(

)1)(1(
)(

1

21 

















 sT

sT
K

sTTk

sTsT
sG D

I

P

dw

C  (6.45) 

is obtained from which follows, that it is the PIDi controller [the PID controller with 

serial structure , see (5.27)], where  

21

1

1 ,,
)(

TTTT
TTk

T
K DI

dw

P 


 . (6.46) 
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Tab. 6.7 Controller adjustable parameters for the SIMC method [29] 

Plant 
Controller 

Type )( **
PP KK   )( **

II TT   )( **
DD TT   

1 sTdk


e1  I – dTk12  – 

2 
sTd

sT

k 


e

11

1  PI 
dTk

T

1

1

2
 ]8,min[ 1 dTT  – 

3 

sTd

sTsT

k 


e

)1)(1( 21

1  

21 TT   

PIDi 
dTk

T

1

1

2
 ]8,min[ 1 dTT  2T  

4* 

PID 
dTk

TT

1

21

2


 

21 TT   
21

21

TT

TT


 

5* 2
1

21

16

)8(

d

d

Tk

TTT 
 

dTT 82   
d

d

TT

TT

8

8

2

2


 

6 
sTd

s

k 
e1  PI 

dTk12

1
 

dT8  – 

7 
sTd

sTs

k 


e

)1( 2

1  

PIDi 
dTk12

1
 

dT8  2T  

8 PID 2
1

2

16

8

d

d

Tk

TT 
 

dTT 82   
d

d

TT

TT

8

8

2

2


 

9 

sTd

s

k 
e

2

1  

PIDi 2
116

1

dTk
 

dT8  dT8  

10 PID 2
18

1

dTk
 

dT16  dT4  

*The row 4 holds for dTT 81  , the row 5 for dTT 81  . The adjustable parameters 

*
PK  , *

IT   and *
DT   hold for the PIDi controller (with a serial structure). 

 

By choice of the time constant Tw we can obtain the differently fast responses, but 

simultaneously also the corresponding requirements on the control variable. It is 

obvious that for the more aggressive tuning the response will be faster, but at the same 

time greater demands will be on the control variable. 

The time constant Tw is sometimes denoted as λ and then we speak about the  

λ-tuning.  

The tuning on the basis of relations (6.46) gives a very good and fast servo 

response but in the case  

dTT 1  (6.47) 
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a very slow regulatory response. Therefore Skogestad modifies the integral time  

 )(4,min 1 dwI TTTT  . (6.48) 

Skogestad recommends the further modification 

dw TT  . (6.49) 

In this way row 3 in Tab. 6.7 was obtained.  

The modifications (6.48) and (6.49) give a relatively fast regulatory response and 

simultaneously ensure a good robustness of the tuning [20], see Tab. 6.8.  

The cases in rows 1, 2, 3 (for dTT 81  ) and 4 in Tab. 6.7 are the same as for the 

desired model method for the relative overshoot κ ≈ 0.05 (5 %), see Paragraph 6.2.8. 

 

Tab. 6.8 Basic control performance indices for the control system tuned by the SIMC 

method in accordance with Tab. 6.7 

Control performance 

indices 

Rows in Tab. 6.7 

1, 2, 3 (for dTT 81  ) and 4 6, 7 

MS 1.59 1.70 

mA 3.14 2.96 

mL [dB] 9.94 9.43 

γ [deg] 61.4 46.9 

γ [rad] 1.07 0.82 

)( RwyA   1.00 1.30 

dpT  1.57 1.49 

dgT  0.50 0.51 

dd TT /  2.14 1.59 

 

For )(41 dw TTT   or dTT 81   the SIMC method is the compensation method 

because the numerator of the controller transfer function cancels the corresponding term 

in the denominator of the plant transfer function.  

The basic control performance indices for the SIMC method (Tab. 6.7) are in Tab. 

6.8 [20].  

For rows 2, 3 (for dTT 81  ) and 5 in Tab. 6.7 the values of the control 

performance indices lie between the values in the left and right columns whereas the 

right column is the limit case.  

In the last row in Tab. 6.8 the relative delay margin is 

dgd

d

TT

T







. (6.50) 
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It expresses the relative time delay change which causes a loss of control system 

stability [13]. 

The values of the control performance indices in Tab. 6.8 are in the recommended 

limits [see relations (6.9), (6.17), (6.18) and (6.24)] and show a good robustness of the 

control system tuned by the SIMC method (Tab. 6.7). 

The last two rows in the Tab. 6.7 are related to the integrating systems of the 

second order with a time delay for which a conventional controller tuning is a very 

difficult problem, because in this case the type of the control system is q = 3. 

Procedure: 

1. The plant transfer function is converted on the basis of any methods from Section 

4.2 to a suitable form in accordance with Tab. 6.7. The form of the plant transfer 

function simultaneously determines the recommended controller.  

2. For the recommended controller the values of its adjustable parameters are 

computed on the basis of Tab. 6.7.  

Example 6.5 

For the plant with the transfer function  

 
   

s
P

sss
sG 3e

121416

1 


   

it is necessary to tune the PI and PID controllers by the SIMC method (the time 

constants and the time delay are in seconds).  

Solution: 

In accordance with the “half rule” we can write (T10 = 6 s, T20 = 4 s, T30 = 2 s, 

Td0 = 3 s, k1 = 1): 

a) The transfer function (4.29) [see (4.54)] 

s 7
2

,s 8
2

30
20

0
20

101  T
T

TT
T

TT dd ; 

 
   

ss
P

ssss
sG 73 e

18

1
e

121416

1 





 . 

Since dTT 81   on the basis of the row 2 in Tab. 6.7 there is obtained 

s 8;57.0 **  IP TK . 

b) The transfer function (4.35) [see (4.55)] 

s 4
2

,s 5
2

,s 6 30
0

30
202101 

T
TT

T
TTTT dd ; 

 
   

ss
P

sssss
sG 43 e

)15)(16(

1
e

121416

1 





 . 

Since dTT 81   on the basis of the row 4 in Tab. 6.7 there is obtained 

s 73.2;s 11;38.1 ***  DIP TTK . 
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The responses of the control system tuned by the SIMC method are shown in Fig. 

6.19. It is evident that the SIMC method gives for very rough approximations of the 

plant transfer function results which can be successfully used in practice. 

 

Fig. 6.19 Responses of the control system tuned by the SIMC method – Example 6.5  

6.2.8  Desired model method 

The DMM (desired model method), formerly also known as inverse dynamics 

method, was developed at the Faculty of Mechanical Engineering, Technical University 

of Ostrava [22, 29]. This method is very simple. 

The DMM uses the formula for the direct synthesis (6.38) 

)(1

)(

)(

1
)(

sG

sG

sG
sG

wy

wy

P

C


 , (6.51) 

where 

sT
PP

dsGsG
 e)()(  (6.52) 

is the plant transfer function and 

sT

sT
o

o
wy

d

dks

k
sG






 e
e

)(  (6.53) 

is the desired control system transfer function and ko is the open-loop gain.  

The simple open-loop transfer function 

sTo
PCo

d

s

k
sGsGsG


 e)()()(  (6.54) 

corresponds to the desired control system transfer function (6.53). 
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After substitution (6.52) and (6.53) in (6.51) the transfer function of the designed 

controller  

)(
)(

sGs

k
sG

P

o
C


  (6.55) 

is obtained. 

It is obvious that the same transfer function (6.55) will be obtained for (6.52) on 

the basis of the open-loop transfer function (6.54).  

In order for the conventional controller transfer function to be obtained on the 

basis of the formula (6.55) the plant transfer function must have one of the forms in 

Tab. 6.9. If it is necessary to use a concrete controller then the plant transfer function 

must be converted to a corresponding form. 

It is very important that the plant transfer functions in Tab. 6.9 in the part )(sGP
  

have not any unstable zeros and poles, and therefore the use of the formula (6.51) or 

(6.55) is fully correct. 

For instance for a plant with transfer function  

21

21

1 ,e
)1)(1(

)( TT
sTsT

k
sG

sT
P

d 





 (6.56) 

for [see (6.52)] 

)1)(1(
)(

21

1




sTsT

k
sGP  

after substitution in (6.55), the transfer function of the PIDi controller gets 

sT

sTsT
K

sk

sTsTk
sG

I

DI
P

o
C









)1)(1()1)(1(
)(

1

21 , 

where 

2
*

1
*

1

1 ,, TTTT
k

Tk
K DI

o
P  . (6.57) 

After using the conversion relations (5.29) the transfer function (5.26) of the 

conventional PID controller with adjustable parameters there will be obtained 

21

21*
21

*

1

21 ,,
)(

TT

TT
TTTT

k

TTk
K DI

o
P





 . (6.58) 

Similarly in this simple way we can get relations for the adjustable parameters of 

conventional controllers for all remaining rows in Tab. 6.9. 

There remains to determine the appropriate open-loop gain ko. The desired control 

system transfer function (6.53) in the form of the anisochronous mathematical model 

[32] has the advantage not only in its relative simplicity, but also in the fact that by 

changing the open-loop gain ko  different servo responses can be easily achieved, i.e. a 

different control performance can be obtained, see Fig. 6.20.  

The open-loop gain ko for the critical nonoscillatory control process and for the 

oscillatory control process on the oscillating stability boundary can be easily determined 
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analytically assuming that the non-dominant poles and zeros of the control system have 

a negligible influence on its behaviour [22, 29].  

From the characteristic quasipolynomial of the control system [see the 

denominator of the desired control system transfer function (6.53)] 

o
sT

kssN d  e)(  (6.59) 

the double real dominant pole s2  and the corresponding open-loop gain ko can be 

determined from the equations 

.
e

1

,
1

01

0e

0
d

)(d

0)( 2

d

o

d

d

o
sT

T
k

T
s

sT

ks

s

sN

sN
d



























 (6.60) 

 

Fig. 6.20 Influence of the open-loop gain ko on servo step responses  

The open-loop gain ko for the oscillating stability boundary (i.e. the ultimate open-

loop gain) can be obtained for cs j2,1   from the characteristic equation 

0e  o
sT

ks d  (6.61) 

as a main solution, i.e. 

d

o

d

co
T

c
T

k
T

kdc

2
,

2
0ej

j 
 




. (6.62) 

For solving the complex equation (6.61) the Euler formula 

xxx sinjcose j   (6.63) 

was used. 

From both relations (6.60) and (6.62) which express the open-loop gain ko, the 

conclusion may be made, that it can be written in the form  

d

o
T

k


1
 , (6.64) 

where β is the coefficient depending on the relative overshoot κ [see Fig. 6.20 and 

relation (6.1)] 
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.
2

1

,e0









 (6.65) 

In order to determine the dependence of the coefficient β on the relative overshoot 

κ, it is necessary to compare the two dominant poles of the control system with transfer 

function (6.53) (see Fig. 6.21) 

 jcotg2,1 s  (6.66) 

with the corresponding pair of the poles of the control system with the transfer function 

(see Fig. 6.21)  

sT

www

w
wy

d

ss
sG




 e

2
)(

22

2




, (6.67) 

where ξw and ωw is the relative damping and the natural angular frequency of the control 

system.  

 

Fig. 6.21 Position of the dominant poles of a control system in complex plane s  

After substitution of (6.66) in (6.61) and modification the complex equation 

0ejcotg
)jcotg(


  dT
ok  (6.68) 

is obtained. 

The complex equation (6.68) after considering the Euler formula (6.63) can be 

expressed in the form of two real equations 

,0sine

,0cosecotg

cotg

cotg





d
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o

d
T

o

Tk
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 (6.69) 

the main solution is  

Re 

Im s  

  

  
1s  

2s  

ww  0 

w  

w  

  

  
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.e
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d
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 (6.70) 

Tab. 6.9 Controller adjustable parameters for the desired model method (DMM) 

Plant transfer function 

Controller 

Type 
)(  

PP KK  
)(  

II TT  )(  
DD TT  
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1
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002 T  
0

0

2

T
 

The adjustable parameters *
PK  , *

IT   and 
*

DT   hold for the PIDi  controller (with a serial 

structure). 

The coefficient β is given by formula [see (6.64)] 








 tge

sin
 . (6.71) 

For instance it is obvious that for  

d

o
T

k
e

1
e0    

and 

d

o
T

k
2

2

2







  , 

the same results like (6.60) and (6.62) were obtained.  
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Since the angle φ (Fig. 6.21) for the control system with the transfer function 

(6.67) is given by the relative damping ξw, i.e. 

w arccos , (6.72) 

therefore the desired servo step response can be obtained by the suitable choice of the 

relative damping ξw.  

 

Fig. 6.22 Servo step responses of  the control system 

In practice the use of the relative overshoot κ is preferable instead of the relative 

damping ξw (Fig. 6.22). The relative overshoot κ can be determined from the step 

response obtained from the transfer function (6.67) 
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Ttw TtTtty wwd 
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, (6.73a) 

21 w

w





 , (6.73b) 

where η(t) is the unit Heaviside step. 

The maximum overshoot appears in time tm, when the derivative of the step 

response (6.73) with respect time t (i.e. the impulse response) 

  )()(sine
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2
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wwd 
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
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 (6.74) 

will be for t > Td for the first time equal to zero, i.e. 

dm Tt 



. (6.75) 

After substitution (6.75) in (6.73) there is obtained 





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



21

e w

w





  (6.76) 






22 ln

ln


 w . (6.77) 

On the basis of the relations (6.77), (6.72), (6.71) and (6.64) the open-loop gain ko 

and coefficient β can be determined for the given (desired) relative overshoot κ.  

For the relative overshoot in the range 0 ≤ κ ≤ 0.5 (0 – 50 %) the corresponding 

values ξw, φ [rad] and β were computed, see Tab. 6.10. 

Tab. 6.10 Values of coefficients ´ and  for given relative overshoot κ 

 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

ξw 1 0.690 0.591 0.517 0.456 0.404 0.358 0.317 0.280 0.246 0.215 

φ 0 0.809 0.938 1.028 1.097 1.155 1.205 1.248 1.287 1.322 1.354 

´ 2.718 1.935 1.710 1.549 1.423 1.319 1.230 1.153 1.086 1.026 0.972 

 2.718 1.944 1.720 1.561 1.437 1.337 1.248 1.172 1.104 1.045 0.992 

 

In Tab. 6.10 the values of β calculated on the basis of the relations (6.77), (6.72), 

(6.71) and (6.64) are marked as β´, because they were obtained analytically by 

comparing the two poles of the control system (6.67) with the two dominant poles of the 

control system (6.53) neglecting its non-dominant poles [22, 29]. The experimentally 

corrected values are marked as β. The differences between the values of β´ obtained 

analytically and the values of β corrected experimentally are not greater than 2 % and 

for the relative overshoot in the range 0 ≤ κ ≤ 0.2 (0-20 %) are even less than 1 %.  

For computation of the coefficient β the formula 

3432.04547.0718.2)(    (6.78) 

can be used, where κ is the relative overshoot in percentages [1]. 

The basic control performance indices were determined for the control system 

with conventional controllers tuned by the DMM, see Tab. 6.11. 

From Tab. 6.11 it follows that for 0 ≤ κ ≤ 0.2 (0-20 %) the tuning by the DMM 

satisfies all the recommended values of the most important control performance indices, 

see (6.9) (6.17) (6.18) and (6.24), so the MPM for κ ≤ 0.2 (20 %) guarantees a good 

control system robustness. 

From a comparison of Tabs 6.9 – 6.11 for κ = 0.05 (5 %) with Tabs 6.7 and 6.8, it 

is clear that the DMM for the proportional plants is equivalent to the SIMC method for 

T1 ≤ 8Td and Tw = Td;  the DMM exactly uses β = 1.944 and the SIMC method uses 

β = 2. For this reason, they are almost identical values of the basic control performance 

indices, compare Tab. 6.8 (the left column) with Tab. 6.11 for κ = 0.05. 

The essential difference between these two methods lies in the choice of the 

desired control system transfer function. The SIMC method assumes that the desired 

control system transfer function for Tw = Td has the form [see (6.40)] 
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Tab. 6.11 Basic control performance indices for the control system tuned by the desired 

model method (DMM) 

κ 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 

MS 1.394 1.615 1.737 1.859 1.987 2.123 2.282 2.458 2.665 

mA 4.27 3.05 2.70 2.45 2.26 2.10 1.96 1.84 1.73 

mL [dB] 12.609 9.686 8.627 7.783 7.082 6.444 5.845 5.296 4.761 

γ [deg] 68.9 60.5 56.7 53.3 50.1 47.1 44.1 41.1 38.1 

γ[rad] 1.20 1.06 0.99 0.93 0.88 0.82 0.77 0.72 0.67 

Awy(ωR)  1 1.002 1.056 1.142 1.247 1.367 1.512 1.678 1.876 

Lwy(ωR) 

[dB] 
0 0.017 0.473 1.153 1.917 2.715 3.591 4.496 5.465 

ωpTd 
2


1.57 

ωgTd 0.37 0.51 0.58 0.64 0.70 0.75 0.80 0.85 0.91 

ΔTd/Td 3.27 2.05 1.70 1.45 1.26 1.10 0.96 0.84 0.73 

 

sT

w

wy
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 e
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1
)(  

and the DMM for (6.64) has the form [see (6.53)] 

sT

sT
d
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dsT
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




 e
e

1
)(


. 

It is obvious that the SIMC method in its basic form, i.e. for T1 ≤ 8Td and Tw = Td 

can never ensure the properties of the control system expressed by the control system 

transfer function (6.40). In contrast, the DMM ensures the properties of the control 

system given by the transfer function (6.53) not only for the value of β = 1.944 (≈ 2), 

but also for other values of β in Tab. 6.10 with a high accuracy. 

Tab. 6.9 can be extended for the ideal proportional plant with time delay 

sT
P

dksG


 e)( 1  (6.79) 

with recommended I controller  

sT
sG

I

C

1
)(   (6.80) 

for 

dI TkT 1
*  . (6.81) 

The DMM can be used for systems without a time delay, i.e. Td = 0, but in this 

case, the desired control system transfer function is supposed in the simple form 

[compare with (6.53)] 

1

1
)(




sT
sG

w

wy , (6.82) 

where Tw is the time constant of the closed-loop control system. The recommended 

controller transfer function can be obtained after substitution (6.82) in (6.51)  
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sTsG
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1
)(  . (6.83) 

For instance for the plant with the transfer function  

21

21

1 ,
)1)(1(

)( TT
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k
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
  (6.84) 

on the basis of the relation (6.83) the transfer function of the PIDi controller 
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is obtained, where  
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1
*

1

1* ,, TTTT
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T
K DI

w

P  , (6.85) 

or after use of the relation (5.29) the transfer function of the conventional PID 

controller is obtained [see (5.26)] with the adjustable parameters 

21

21*
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*

1

21* ,,
TT

TT
TTTT

Tk

TT
K DI

w

P





 . (6.86) 

The time constant Tw should be chosen with regard to the limitation of the 

manipulated variable u(t) [the smaller Tw   the greater demands on the manipulated 

variable u(t)] and the required settling time ts. For instance, for the given relative control 

tolerance δ it holds [see Fig. 6.1] 

.4%)2(02.0

,3%)5(05.0

ws

ws

Tt

Tt








 (6.87) 

Example 6.6 

For the plant with the transfer function  

2)12)(14)(16(

2
)(




sss
sGP  

it is necessary to tune the PI and PID controllers by the DMM so that the relative 

overshoot will be about 10 % (time constants are in seconds). 

Solution: 

The plant transfer function does not correspond to the forms in Tab. 6.9, and 

therefore it is necessary to modify them so that they will be suitable for the PI and PID 

controllers, i.e. they must by converted to the forms in rows 2 and 4 (5) in Tab. 6.9. 

In accordance with the “half rule” we can write: k1 = 2, T10 = 6 s, T20 = 4 s, 

T30 = T40 = 2 s. 

The transfer function (4.29) [see (4.54)]: 

8
2

20
101 

T
TT s,   6

2
4030

20  TT
T

Td s, 
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On the basis of Tab. 6.9 (row 2) and Tab. 6.10 for k1 = 2, T1 = 8 s, Td  = 6 s and 

κ = 0.1  β = 1.720 we can write 

8;39.0 1
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1
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T
K I

d

P 


s. 

The transfer function (4.35) [see (4.55)]: 
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On the basis of Tab. 6.9 (row 5) and Tab. 6.10 for k1 = 2, T1 = 6 s, T2 = 5 s, Td  = 3 

s and κ = 0.1  β = 1.720 we can write 

11;07.1 21
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 TTT
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P 
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 
TT

TT
TD s. 

The control system responses are shown in Fig. 6.23. It is obvious that even for 

the rough approximation of the plant transfer function the obtained responses reflect 

both the good applicability of the DMM and the “half rule”.  

  

Fig. 6.23 Responses of the control system tuned by DMM – Example 6.6 

Example 6.7 

It is necessary to tune the PID controller by the DMM for the plant with the 

transfer function  

s
P

ss
sG 6e

)13)(15(

2
)( 


  
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so as to the relative overshoot was κ = 0; 0.1 and 0.2 (time constants and time delay are 

in seconds). 

Solution: 

The plant transfer function has a suitable form for the PID controller (see Tab. 

6.9, row 5) and therefore for k1 = 2, T1 = 5 s, T2 = 3 s, Td  = 6 s on the basis of Tabs 6.9 

and 6.10 we can directly write: 

25.0718.20
1

21* 


 
d

P
Tk

TT
K


 ; 

39.0720.11.0 *  PK ; 

46.0437.12.0 *  PK ; 

s88.1,s8
21

21*
21

* 


 
TT

TT
TTTT DI . 

The responses of the control system are shown in Fig. 6.24. We can see that the 

resulting courses are very accurate. 

 

Fig. 6.24 Responses of the control system with the PID controller tuned by DMM – 

Example 6.7 

6.2.9  Modulus optimum method 

The MOM (modulus optimum method) belongs among analytical controller 

tuning methods. It is based on the requirement for the modulus of the frequency control 

system transfer function [7, 21, 22, 27, 29] 

1)(1)j(1)(   wywywy AGsG . 

It is assumed that the desired course of Awy(ω) should be a monotonically 

decreasing function in accordance with Fig. 6.25. 
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Fig. 6.25 Desired course of the modulus of frequency control system transfer function 

for the modulus optimum method  

It is obvious that it holds  
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This is important because with the square power it is easier to work and the 

equalities 
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hold and therefore for the control system transfer function 
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it is possible to write 
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If the equalities 
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hold and the numerator degree m would be equal to the denominator degree n of the 

control system transfer function (6.88), then the square of modulus )(2 wyA  and hence 

modulus Awy(ω) would be independent of the angular frequency ω. From the point of 

view of the physical realizability the inequality n > m always holds in technical practice 

and therefore independency on the angular frequency ω cannot be achieved. The control 

process will be satisfactory if )(2 wyA  with increasing angular frequency ω it will 

monotonically decrease, i.e. 

i

i
wy

A

B

A

B
A 

0

02 )0( . (6.91) 

When using the MOM the conditions (6.91) are practically used like equalities in 

the same number as there is in the number of adjustable controller parameters p, i.e. 

piBABA ii ,,2,1,00  . (6.92) 

For the control systems of the type q = 1 ( 0000 ABab  ) the equalities 

piBA ii ,,2,1,  . (6.93) 

are used. 

Since condition (6.92) or (6.93) does not consider all the coefficients of the 

characteristic polynomial 

01
1

1)( asasasasN n
n

n
n  

   (6.94) 

in the denominator of the control system transfer function (6.88), the MOM generally 

does not guarantee the stability and therefore it must not ensure the desired control 

process performance. When using the MOM it is generally necessary to check stability 

and to verify the control process performance.  

If the plant transfer function GP(s) has any of the forms mentioned in Tab. 6.12, 

then using the recommended controller and corresponding values of its adjustable 

parameters (T = 0), the control system transfer function will have the so called standard 

form  

iww

www

wy TT
sTsT

sG 2,
2

1
,

12

1
)(

22



 


, (6.95) 

where for rows 1 and 2 in Tab. 6.12 i = 1, for rows 3 and 4 i = 2 and for row 5 i = 3. 

In this case it is not necessary to check the stability of the control system, because 

the form (6.95) is also the standard form for the ITAE criterion [see (6.3e)]. This 

standard form leads to the relative overshoot 4.3 %. 

The compensation of the time constants, i.e. the cancellation of one or two stable 

binomials for PD and PI or PID controllers, was used for controller tuning on the basis 

of Tab. 6.12. It causes a simplification of control system dynamics but simultaneously it 

may lead to slower responses because the stable zeros of the numerator of the transfer 

function Gwy(s) can accelerate the control process [22, 29].  

Table 6.12 may be used as well for the analog controllers (T = 0) as for the digital 

controllers (T > 0), see Section 6.3 [27]. 
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The MOM is used for q ≤ 1, primarily for electrical drives control, where small 

time constants (electrical) are substituted by the summary time constant, see Section 

4.2. 

 

Tab. 6.12 Controller adjustable parameters for the modulus optimum method (MOM)  

Plant transfer function 
Controller < analog  

digital 

T = 0 

T > 0 

Type *
PK  *

IT  *
DT  

1 
11

1

sT

k
 I –  TTk 5.02 11   – 

2 
 11
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k
 P 

112
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3   11 21

1
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21
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TI  TT 5.01   – 
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1

21 
 – TT 5.01   

5    111 321
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321 TTT   

PID 
 TTk

TI

5.02 31

*


 TTT  21  

421

21 T

TT

TT



 

 

Procedure: 

1. The plant transfer function is converted into a suitable form in accordance with 

Tab. 6.12 and for the recommended controller the values of its adjustable 

parameters are calculated.  

2. If the plant transfer function cannot be converted into some of the forms in Tab. 

6.12 or another controller instead of the recommended controller is used, then for 

the determination of the p adjustable parameters of the selected controller for 

q = 0 formulas (6.92) are used and for q = 1 formulas (6.93) are used. It is 

possible to use time constant compensation (cancellation).  

3. In the case of another form of the control system transfer function than the 

standard form (6.95) for the MOM, it is necessary to check the stability (if the 

control system is unstable, the MOM cannot be used) and the control performance 

should be preferably verified by simulation.  
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Example 6.8 

It is necessary to tune the PI controller by the MOM for the plant with the transfer 

function  

21

21

1 ,
)1)(1(

)( TT
sTsT

k
sGP 


  

with the use of compensation. 

Solution: 

For the PI controller with the transfer function  
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the open-loop control system transfer function has the form 
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from which it follows that the control system type q = 1. 

For 1
* TTI   the compensation (cancellation) of the stable binomials T1s + 1 takes 

place and the open-loop transfer function is essentially simplified  

)1(
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


sTsT

kK
sG P

o . 

The control system transfer function has the form 
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where a0 = b0 = KPk1, a1 = T1, a2 = T1T2. 

On the basis of the relations (6.90) and (6.93) for p = 1 there is obtained  
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The adjustable parameters for the PI controller are  

1
*

21

1* ,
2

TT
Tk

T
K IP  . 

The same adjustable parameters were directly obtained from Tab. 6.12 (row 3 for 

T = 0).  

After substitution these parameters in the control system transfer function there is 

obtained  

12

1

122

1
)(

22
2

22
2 





sTsTsTsT

sG
www

wy


, 



VÍTEČEK, A., VÍTEČKOVÁ, M. Closed-Loop Control of Mechatronic Systems 

 

146 

where 

22,
2

1
TTww  . 

It is obvious that the standard form of the control system transfer function for the 

MOM was obtained [see (6.95)] and therefore a stability check is unnecessary. 

 

Fig. 6.26 Response of the control system with the PI controller tuned by the MOM – 

Example 6.8 

For instance for k1 = 3, T1 = 6 s and T2 = 4 s there is obtained 

6;25.0
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1
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T
K IP s. 

The response of the control system is shown in Fig. 6.26. 

6.2.10 Symmetrical optimum method 

The SOM (symmetrical optimum method) is suitable for controller tuning for the 

control system type q ≥ 2, and especially in the case when disturbances act on the plant 

input [2, 7, 21, 29]. In this paragraph q = 2 is assumed. Then the control system transfer 

function with the PI controller for the SOM has the standard form  
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where i = 1 and 2, see the corresponding row in Tab. 6.13. 

To calculate the controller adjustable parameters it is necessary to solve the 

system of two equations [see (6.90)] 
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For instance for the plant with the transfer function  

)1(
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sGP  (6.98) 

it is necessary to choice the PI controller (so as q = 2) with the transfer function  
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From the open-loop transfer function the closed-loop control system transfer 

function  
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is obtained 
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From (6.100) it follows that q = 2 (the last two coefficients in the numerator and 

the denominator are the same).  

For a0 = k1KP, a1 = k1KPTI, a2 = TI and a3 = T1TI after substitution in (6.97) the 

adjustable parameters are obtained (see row 1 in Tab. 6.13 for T = 0) 
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It is obvious that after substitution (6.101) in (6.100) for i = 1 the standard form 

(6.96) for the SOM is obtained.  

Similarly, for the T1 >> T2  row 2 in Tab. 6.13 for T = 0 is obtained because it can 

be written 
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Since the stable zero is in the numerator of the control system transfer function 

(6.96) and moreover q = 2, in the control system a relatively large overshoot of about 43 

% arises. The large overshoot may be substantially reduced to about 8% by using the 

input filter (see Fig. 5.5) 

14

1
)(


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sT
sG

i

F , (6.103) 

which in the case of using the 2DOF PI controller can be easily realized by selecting the 

set-point weight value for the proportional component b = 0, see equation (5.36) for 

TI = 4Ti and TD = 0. 

Table 6.13 may be used as well for the analog controllers (T = 0) as for the digital 

controllers (T > 0), see Section 6.3 [29]. 
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Tab. 6.13 PI controller adjustable parameters for the symmetrical optimum method 

(SOM)  

Plant transfer function 
PI controller < 

analog T = 0 

digital T > 0 

*
PK  *

IT  Filter 
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The SOM, similarly as the MOM, is mainly used in electric drives, where instead 

of the input filter or the 2DOF PI controller the speed limiter on the input is often used 

[7, 21]. 

For instance the transfer function of the DC motor from Example 3.6 can be easily 

modified in the form (6.98) because motor armature circuit inductance is often 

negligible, i.e. La ≈ 0 (see also Section 4.2). 

The same form (6.98) has also the simplified linearized model of the hydraulic 

double acting linear motor, see Example 4.1. 

Procedure: 

1. The plant transfer function is converted into a suitable form in accordance with 

Tab. 6.13, e.g. by the approaches described in Section 4.2.  

2. Based on Tab. 6.13 the values of the PI controller adjustable parameters are 

determined and when the 2DOF PI controller is used then b = 0 is set.  

 

Example 6.9 

It is necessary to tune the PI controller by the SOM for the plant with the transfer 

function (time constants are in seconds) 

)12)(110(
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sss
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Solution: 

The plant transfer function does not have a suitable form for the SOM (see Tab. 

6.13), and therefore it has to be modified. For k1 = 0.05; T10 = 10 and T20 = 2 on the 

basis of the equality of complementary areas over the plant step responses (see Section 

4.2) there is obtained 
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From Tab. 6.13 for k1 = 0.05 and T1 = 12 (T = 0) the PI controller adjustable 

parameters were obtained 

484;84.0
2

1
1

*

11

*  TT
Tk

K IP  s. 

The servo and regulatory responses for different values of the set-point weight b 

are shown in Fig. 6.27. For b = 1 the 2DOF PI controller is the conventional (1DOF) PI 

controller. It is clear that by using of the 2DOF PI controller the overshoot in the servo 

response was significantly reduced.  

 

Fig. 6.27 Responses of the control system with the 2DOF PI controller tuned by the 

SOM for different values of weight b – Example 6.9  

6.3 Digital control 

With the development of digital technology and at the same time with decreasing 

prices digital controllers are increasingly being used in the control engineering. Digital 

controllers mostly implement the same control algorithms like analog ones but in 

discrete forms. Due to the assumed negligibly small quantization errors the terms 

“digital” (discrete in time and magnitude) and “discrete” (discrete in time but 

continuous in magnitude) are not distinguished. For instance the digital PID controller 

(T is the sampling period, kT – the discrete time)  
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,,2,1,0 k   

corresponds to the analog PID controller. 

It is obvious that for the digital controllers further adjustable parameter arises – 

the sampling period T. Its proper choice is very important from the point of view of the 
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control performance. The sampling period T increases the influence of the integral 

(summation) component (the integral component destabilizes the control process) and 

reduces the effect of the derivative (difference) component (the derivative component 

stabilizes the control process), hence the impact of the sampling period T on the 

control performance is always negative. This follows also from the fact that between 

the sampling instants kT ≤ t < (k + 1)T the digital controller has no information on the 

instantaneous value of the control error e(t), see Fig. 6.28. 

0 T T2 T3

T4

kT

)(kTe

 

Fig. 6.28 Control error course in a control system with a digital controller 

 

Fig. 6.29 Control system with a digital controller 

The analog-to-digital converter (A/D converter) processes the conversion of the 

continuous (analog) variable into the discrete (digital) variable. It is plugged in the 

feedback (Fig. 6.29). The output variable of the digital controller (DC) is the discrete 

manipulated variable u(kT) which the digital-to-analog converter (D/A converter) 

converts into the continuous in time (analog) variable uT(t), and has the most staircase 

course (Fig. 6.30). 

The digital PID controller is one of the most complex conventional digital 

controllers. In practice simpler controllers are used: 

- the digital PI controller  
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- the digital PD controller 
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Fig. 6.30 Manipulated variable courses in a control system with a digital controller  

- the digital I controller  





k

iI

iTe
T

T
kTu

0

)()( , (6.107) 

- the digital P controller  
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In practice, digital control algorithms with the summation (integral) component 

are implemented in incremental forms [unlike the position forms (6.104) - (6.108)], 

namely: 

- the digital PID controller 
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- the digital PI controller 


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- the digital I controller 
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Summation (integral) and difference (derivative) components are often also 

implemented by other methods (the forward rectangular method, trapezoidal method, 

etc.) and in the summation index i starts from 1 and not from 0. 
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For properly choosing sampling period T these differences are negligible and also 

manufacturers often do not give any information about summation and difference 

component implementation. 

For the difference component the input variable must always be properly 

filtered [18, 22, 29]. 

The digital controllers, similarly like the analog controllers, may also be 

constructed with two degrees of freedom. 

When using a conventional digital controller in comparison with the same type of 

conventional analog controller, there is always a reduction of the control process 

performance. It is given by the fact that between two sampling instants the digital 

controller has no information on the real value of the control error e(t), and in addition 

as mentioned above by increasing the sampling period T leads to destabilization of the 

control system. 

Therefore it is obvious that the choice of the sampling period and the problems of 

the digital control are very complicated. Simplified digital controller tuning is shown 

below which for the ordinary control practice is fully satisfactory. 

If the A/D converter is moved from the feedback in front of the digital controller 

(Fig. 6.31 above) then the digital controller with both converters can be approximately 

regarded as the analog controller (AC). Therefore, for the approximate control system 

synthesis with a digital controller there can be used the block diagram of the control 

system in Fig. 6.31 (below). 

Assuming that the D/A converter has the properties of the sampler and zero-order 

holder the manipulated variable uT(t) has the form of the staircase time function, see 

Fig. 6.30. 

From Fig. 6.30 it follows that the staircase manipulated variable uT(t) for 

sufficiently small sampling period T can be approximately expressed as u(t – T/2). 

Therefore, the control system with the digital controller can be substituted by a 

continuous control system with the analog controller GC(s) and the plant with the 

transfer function 
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where )(sGP
  is the part of the plant transfer function without the time delay.  

Then for this plant the appropriate analog controller GC(s) is designed and tuned. 

The values of its adjustable parameters, together with the sampling period T are then 

applied to the corresponding digital controller. 

Some tuning methods are directly derived for digital controllers. 
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Fig. 6.31 Conversion of a control system with a digital controller on a control system 

with an analog controller  

In this text, it relates to the MOM and SOM (Tabs 6.12 and 6.13), which are 

determined for plants without a time delay. Therefore, these methods can be directly 

used for digital controller tuning. For other methods considering plants with a time 

delay the approximate procedure above for conventional digital controller tuning can be 

used. If for the controller tuning methods mentioned in this text the inequality [29] 

dTTTT 3.0and3.0 1   (6.113) 

hold then it can be assumed that the deterioration of the control performance in 

comparison with the corresponding analog control will not be greater than about 15 % 

[integral criterion IAE (6.3e)]. 

By the time constant T1 in the inequality (6.113)  the greatest plant time constant 

is to be considered. 

Example 6.10 

For the plant with the transfer function  

)14)(16(

1
)(




ss
sGP   

it is necessary to tune the analog and digital controllers so that the relative overshoot 

will be about 5 % (time constants are in seconds).  

Solution: 

Since the MOM and DMM ( also the SIMC method for this plant) are able to 

ensure a relative overshoot of about 5 %,  both methods will therefore be used. 

Modulus optimum method (MOM) 

The plant transfer function has the desired form for the MOM (Tab. 6.12, k1 = 1, 

T1 = 6, T2 = 4), and therefore we can write directly: 

a) The analog PI controller (T = 0) 
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6;75.0
2

1
*

21

1*  TT
Tk

T
K IP s.  

b) The digital PI controller 

In accordance with the inequalities (6.113) we can choose e.g. T = 1 s: 

5.55.0;69.0
2

5.0
1

*

21

1* 


 TTT
Tk

TT
K IP  s.  

The responses of the control system tuned by the MOM are shown in Fig. 6.32. 

 

a) 

 
b) 

 

Fig. 6.32 Control system with an analog and digital PI controller – Example 6.10:  

a) controlled variable responses, b) manipulated variable courses  
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Desired model method (DMM) 

The plant transfer function has not the desired form for the DMM (Tab. 6.9), 

therefore we must modify it (for the “half rule”: k1 = 1, T10 = 6, T20 = 4). 

In accordance with (4.54) we can write  

s2
2

,s8
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20
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)14)(16(

1
)( 





 .  

We use Tabs 6.9 and 6.10 for the DMM (k1 = 1, T1 = 8, Td = 2):  

a) The analog PI controller (T = 0) 

944.105.0   ,  

8;06.2 1
*

1

1*  TT
Tk

T
K I

d

P 


s,  

b) The digital PI controller  

We use the same sampling period T = 1 s  in order to compare the MOM and 

DMM: 

8;65.1

2

1
*

1
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









 TT
T

Tk

T
K I

d

P 



s.  

The responses are shown in Fig. 6.32a. There are also shown the corresponding 

manipulated variable courses (Fig. 6.32b). 

The responses in Fig. 6.32a show that the DMM gives the faster responses with a 

slightly higher overshoot although a rather rough approximation of the plant transfer 

function was used. The overshoot for the DMM can be easily reduced by reducing the 

controller gain KP. The obtained courses in Fig. 3.32 also show that simplified digital 

controller tuning gives acceptable results for control practice. 

6.4  Cascade control 

Simple control systems with conventional controllers (i.e. control systems with a 

simple single-loop structure) may not always ensure the desired control performance. In 

this case, it is possible to use controllers with a more complex structure or alternatively 

the control systems may have a more complex structure. 

In the first case, design, tuning, and especially the later maintenance in 

operational conditions are very demanding from the point of view of craftsmanship as 

well as the financial costs. The second case of using a more complex structure of the 

control system is often inexpensive and feasible and it can achieve a substantial increase 

in the control performance. Such control systems are characterized by a more complex 

structure but they have only one main desired variable w(t) and one main controlled 

variable y(t). 
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The importance of the control system with a complex structure is currently great, 

because the availability of high-quality measuring and computing devices easily allows 

implementing these complex structures in industrial practice.  

Below we will be devoted to only so called cascade control systems.  

Since the conclusions cover both continuous control systems with analog 

controllers and discrete control systems with digital controllers the arguments in transfer 

functions and variable transforms will be omitted. 

A block diagram of the cascade control system is shown in Fig. 6.33. From the 

block diagram it follows that the cascade control system consists of an auxiliary (slave) 

control system (the inner loop) and a main (master) control system (the outer loop). The 

controlled variable y1 and the desired variable w1 are called the auxiliary variables. 

 

Fig. 6.33 Cascade control system 

In accordance with Fig. 6.33 for the auxiliary control system there can be written 
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then for the main control system it is possible to write  
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 (6.115) 

If the auxiliary control system will be properly tuned, then for the sufficiently 

large modulus of the open inner loop the relations hold 

1
1111  ywPC GGG  (6.116) 

and the transfer functions of the main control system can be simplified 
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Then the desired control performance will be ensured by properly tuning the main 

control system (the outer loop). 

From the above it is obvious that the cascade control system can be used in the 

case when the plant can be divided into two parts with the transfer functions GP1 and 

GP2 (i.e. the auxiliary variable y1 can be measured at a suitable position). Its essential 

feature is that it (partially) eliminates the internal loop including the disturbances acting 

in this loop as well as its potential nonlinearities. The inner loop should not contain time 

delays and the auxiliary controller GC1 should be as simple as possible, i.e. the auxiliary 

controller GC1 is the P controller in the most cases. The main controller GC2 should 

include the integration component (term), and therefore it is most often the PI or PID 

controller.  

Cascade control systems are used for controlling electrical drives and power 

servomechanisms. In this case, they may have more than two loops [7, 21, 22]. They are 

very often used for the control of boilers, destillation columns and reactors and other 

thermal power plants. 

Procedure: 

1. Primarily, the inner loop is tuned (i.e. the auxiliary control system) for the first 

part of the plant. The P controller is most often used (steady-state errors do not 

matter). 

2. Then the inner loop is replaced by the simplest dynamic subsystem with the 

transfer function Gw1y1 (in case of possibility Gw1y1 = 1). 

3. Finally, the outer loop (i.e. the main control system) is tuned using the PI or PID 

controller and preferably the achieved control performance is verified by the 

simulation. 

Example 6.11 

For the plant with the transfer function 

sTsT
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it is necessary to design such control which ensures the control process without 

overshoots and steady-state errors for the step change of all input variables.  

Solution: 

Since the integrator output variable can be measured, the plant can be described 

by two serially connected transfer functions 

sT
PP

d

sT

k
sG

s

k
sG




 e

1
)(,)(

1

2
2

1
1   

and then the cascade control in accordance with Fig. 6.34 can be used.  

We use the P controller in the inner loop  

11 )( PC KsG   

and the PI controller in the outer loop  
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For the auxiliary control system (the inner loop) it is possible to write  
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It is obvious, that the inner loop can be neglected theoretically for KP1 → ∞, 

practically, if its time constant is much smaller than the time constant T1, i.e. 

1

1
*

1

1
T

kKP

    0)(,1)(
1111

 sGsG yvyw .  

Then the main control system (the outer loop) can be considered as a simple one-

loop control system, where Gw1y1(s) ≈ 1 (Fig. 6.35). In this case, the main PI controller 

may be tuned only for the second part of the plant with the transfer function GP2(s). 

From the point of view of the requirements on the control performance the DMM 

can be used for main PI controller tuning. On the basis of Tabs 6.9 and 6.10 (for 

718,20   ) it is possible to write  

1
*

2

1* ; TT
Tk

T
K I

d

P 


.  

For instance, for k1 = 2, k2 = 1, T1 = 5 s, Td = 5 s, based on the DMM the adjustable 

parameters of the both controllers were obtained: 5*
1 PK  (KP1k1 = 2T1), 368.0* PK ; 

5* IT  s. 

The responses of the cascade control system are shown in Fig. 6.36. It is obvious 

that the responses without overshoots can be obtained even for the integrating plants 

and  conventional controllers. In most cases cascade control ensures very good control 

performance.  

 

Fig. 6.34 Cascade control system – Example 6.11  
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Fig. 6.35 Modified cascade control system – Example 6.11 

 

Fig. 6.36 Response of the cascade control system – Example 6.11 

Example 6.12 

For the DC motor from Example 3.6 it is necessary to design a position cascade 

control. It is assumed that the DC motor is supplied by a power amplifier. 

Solution: 

From equations (3.94) and the block diagram in Fig. 3.24 it follows that the motor 

torque m(t) is directly proportional to the armature current ia(t). Therefore, it is 

appropriate to control this current. 

Assume that the power amplifier has negligible dynamics and for the control of 

the current ia(t) the P controller with gain KPi will be used, see Figure 6.37a. 

By moving the summation node (Tab. 3.1) we obtain the transformed block 

diagram in Fig. 6.37b. 

In accordance with the block diagram in Fig. 6.37b for the current loop it holds  
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For sufficiently high KPi there is obtained 
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Because simultaneously  
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c
 

holds (see Fig. 6.37b) the block diagram in Fig. 6.37 can be essentially simplified as it 

is shown in Fig. 6.38. 

a) 

 
b) 

 

Fig. 6.37 Block diagram of the DC motor with a current loop: a) original,  

b) transformed – Example 6.12 
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Fig. 6.38 Simplified block diagram of the DC motor with a tuned current loop – 

Example 6.12  

For the speed loop the P controller with gain KPω is also used and in accordance 

with the block diagram in Fig. 6.39 we get 
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Similarly like for the current loop for sufficiently high gain KPω of the P controller 

for the speed loop we obtain 
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In this case the time constant Tω cannot be neglected because the total moment of 

inertia Jm often has a high value. 

The simplified block diagram of the DC motor with a tuned current and speed 

loops is shown in Fig. 6.40. 

 

Fig. 6.39 Block diagram of the speed loop of a DC motor with a tuned current loop – 

Example 6.12 
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Fig. 6.40 Simplified block diagram of a speed loop of a DC motor with a tuned current 

loop – Example 6.12  

First consider in the position loop in Fig. 6.41 the P controller with gain KP. In 

accordance with Fig. 6.41 for 
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Fig. 6.41 Block diagram of a position loop of a DC motor with a tuned current and 

speed loops – Example 6.12 

For a tuning of the P controller we will use the standard form (6.95) for the MOM, 

for which there holds 
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After substitution in the previous transfer functions there is obtained 
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From the last transfer function it follows that by the use of the P controller in the 

position loop the steady-state control error )(me  remains in it for the step change of 

the load torque )()( 0 tmtm ll  . 

Therefore there holds (see Fig. 6.41) 
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the steady-state control error can be easily determined  

0
0

0
2

)(

)(
lim)( ll

l

l

m

s
m mTk

s

m

sM

sE
se 











. 

Now we will use the PI controller with transfer function 
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in the position loop. 

Since the DC motor after tuning of the current and speed loops has the transfer 

function in a suitable form for the SOM, see Fig. 6.40 and Tab. 6.13, we can therefore 

directly write (T = 0, k1 = 1, T1 = Tω) 
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In accordance with Fig. 6.41 for the PI controller we get 

.
1488

8

)(

)(

,
1488

14

)(

)(

2233

2

2233











sTsTsT

sTk

sM

sA

sTsTsT

sT

sA

sA

l

l

w









 



VÍTEČEK, A., VÍTEČKOVÁ, M. Closed-Loop Control of Mechatronic Systems 

 

164 

Since in the last transfer function  the complex variable s arises in the numerator, 

the step change of a load torque does not cause the steady-state control error (see the 

final value theorem, Appendix A). 

The SOM gives a big overshoot. It is caused by the stable binomial  

14 sT  

in the numerator of the control system transfer function. That is why the 2DOF PI 

controller with b = 0 or the input filter with the transfer function (see Tab. 6.13)  

14

1
)(




sT
sGF



 

must be used. 

Then the resulting control system transfer function has the form 
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On the basis of the above derived relations the simulation of the shaft (angular) 

position cascade control of the DC motor was performed for the following parameters: 

Jm = 0.02 kg m
2
, La = 0.2 H, Ra = 1 Ω, cm = ce = 0.05 N m A

-1
 = V s rad

-1
, 

bm = 0.01 N m s rad
-1

, αw0 = 1 rad, ml0 = 0.5 N m.  

The current loop  

In the current loop the P controller with sufficiently high gain KPi is used, e.g. it is 

chosen as 
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The speed loop 

Also in the speed loop the P controller with sufficiently high gain KPω is used, e.g. 

it is chosen as 
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cK
kK




 ; 

96.1
1

;039.0 





 
mmP

l

mmP

m

bcK
k

bcK

J
T



 . 

The position loop 

a) P controller 

In the block diagrams in Figs 6.41 and 6.42 the P controller  

PC KsG )(  

and in Fig. 6.42 the transfer function 

1)( sGF  
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Fig. 6.42 Block diagram of angular position cascade control of a DC motor – Example 6.12  
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should be considered. 

In accordance with the previous relations we can write 

82.12
2

1*  
T

KP ; 

077.02)( 0  llm mTke  rad. 

The response of the DC motor with the cascade control for the P controller in the 

position loop is shown in Fig. 6.43. 

 

Fig. 6.43 Response of the DC motor with cascade control for the P controller in a 

position loop – Example 6.12  

b) PI controller 

In the block diagrams in Figs 6.41 and 6.42 the PI controller  













sT
KsG

I

PC

1
1)(  

and in Fig. 6.42 the transfer function 

14

1
)(




sT
sGF



 

should be considered. 

We will determine the adjustable parameters of the PI controller  

16.04;82.12
2

1 **   



TT
T

K IP . 

The response of the DC motor with the cascade control for the PI controller in the 

position loop is shown in Fig. 6.44. 
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Fig. 6.44 Response of the DC motor with cascade control for the PI controller in a 

position loop – Example 6.12 

Both Figs 6.43 and 6.44 show that even for large simplifications the results of the 

simulation illustrate good agreement with assumptions. 

The real cascade control of the DC motor must consider the maximum permissible 

current in the current loop and the maximum permissible angular velocity in the speed 

loop. These restrictions cause significant nonlinearities of the cascade control. Most 

often PI controllers are used in current and speed loops, because it is necessary to 

consider the dynamics of power amplifiers, sensors and filters. In the position loop a P 

or PI controller is used. 
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7 STATE SPACE CONTROL 

The chapter briefly describes the design of a state controller and observer for the 

SISO linear dynamic system. 

7.1  State space controller 

Development of a state space control is associated with the development of 

aeronautics and astronautics. It allows control very complex and unstable systems, 

where classical control with 1DOF and 2DOF controllers does not give satisfactory 

results. 

Consider the SISO controlled linear dynamic system (in state space methods the 

name “controlled system” is most often used instead of the plant) 

0)0(),()()( xxbAxx  tutt , (7.1a) 

)()( tty T
xc , (7.1b) 

which is controllable, observable and strongly physically realizable [see (3.36) and 

(3.37)]. Its characteristic polynomial has the form 

,)())((

)det()(

21

01
1

1

n

n
n

n

ssssss

asasasssN



 




AI
 (7.2) 

where s1, s2,…, sn are the system poles.  

The task of the state space controller (state feedback, feedback controller) 

represented by the vector (Fig. 7.1) 

T
nkkk ],,,[ 21 k , (7.3) 

is to ensure for the closed-loop control system its characteristic polynomial  

)())((

)det()(

21

01
1

1

w
n

ww

wwnw
n

n
ww

ssssss

asasasssN



 




AI
 (7.4) 

with given poles w
n

ww sss ,,, 21  . 

The vector of the state space controller can be obtained by comparing the 

coefficients of the control system characteristic polynomial with the corresponding 

coefficients of the desired control system characteristic polynomial at the same powers 

of complex variable s. In such a way the system of n linear equations is obtained for n 

unknown components ki of the vector k. For large n, this procedure is demanding. 

The closed-loop control system with the state space controller in accordance with 

Fig 7.1 may be described by the equations 

0)0(),()()( xxbxAx  twtt w
 , (7.5a) 

)()( tty T
xc , (7.5b) 

where the system matrix is given (see Fig. 7.1b) 
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T
w bkAA  . (7.6) 

The dependence between output yw(t) and input w´(t) in the steady state (t  ∞) 

can be determined on the basis of (3.39), i.e. 

 


wsy w

T

s
w ])([lim 1

0
bAIc   

wy w
T

w



bAc

1
. (7.7) 

In order to in the steady state the equality 

wyw   (7.8) 

holds, the correction  

 

 

Fig. 7.1 Block diagram of the control system with a state space controller without input 

correction: a) original, b) modified, c) resultant 
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bAc
1

1



w

Twk  (7.9) 

in the input must be placed (Fig. 7.2). 

The state space controller design is easy for the state space model of the 

controlled system in the canonical controller form (3.42). 

 

Fig. 7.2 Block diagram of the control system with a state space controller  

Consider that the matrices A and Aw are transformed into canonical controller 

forms in accordance with the relations (3.36), (3.47), (3.49) and (3.50), then equation 

(7.6) can written in the canonical controller form 

T
cccwc kbAA  . (7.10a) 

i.e. 
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
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
















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


 (7.10b) 

We can see that the equalities hold  

  cii
w
i kaa 11   

11   i
w
ici aak    for   i = 1, 2,…,n. (7.11) 

The last equalities can be written in the vector form 

aak  w
c , (7.12) 

where 

Tw
n

www aaa ],,,[ 110  a , (7.13a) 
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)(tw  
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  T
naaa ],,,[ 110  a  (7.13b) 

are the vectors of the coefficients of the characteristic polynomials Nw(s) and N(s) [see 

(7.4) and (7.2)]. 

We have received the vector kc  of the feedback state space controller in the 

canonical controller form, and we must therefore transform it back for the original 

controlled system (7.1). We can write 















1

1 c
T
c

T

cc

T
c

T
c

Tkk
xTx

xkxk
  

    1)(  c
TwT
Taak , (7.14) 

where the transformation matrix Tc is given by the relations [see (3.47), (3.49) and 

(3.50)] 

QbAQT ),(coc  , (7.15a) 

],,,[),( 1
bAAbbbAQ

 n
co  , (7.15b) 
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n
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a

aa

aaa

Q . (7.15c) 

The state space controller is able to ensure the required pole placement of the 

control system, i.e. it is able to ensure its dynamic properties, but it cannot remove the 

harmful effect of disturbance variables. 

In the case of the existence of the disturbances v(t), the state space model of the 

controlled system will be as follows 

 

Fig. 7.3 Block diagram of a control system with a state space controller and additional 

loop with an I controller for disturbance attenuation  
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0)0(),()()()( xxFvbAxx  ttutt ,  

)()( tty T
xc ,  

where v(t) is the disturbance vector of the dimension p, F – the matrix of the dimension 

(n×p). 

In order to eliminate disturbances v(t) an additional loop with a I or PI controller 

is added, see Fig. 7.3. It is obvious that the number of poles is increased by 1. This case 

is not further considered in the text.  

Procedure: 

1. Check the controllability and the observability of the controlled system (plant) 

[relations (3.36) and (3.37)]. 

2. Formulate the requirements for the control performance and express it by the 

desired pole placement of the control system.  

3. Determine the coefficients of the characteristic polynomials N(s) and Nw(s) 

[relations (7.2) and (7.4)]. 

4. Compare the coefficients of the control system characteristic polynomial with the 

corresponding coefficients of the desired control system characteristic polynomial 

at the same powers of complex variable s and solve the system of n linear 

equations for n unknown components of the vector k. In the case of high n use the 

transformation matrix (7.15) and the formula (7.14).  

5. On the basis of the relation (7.9) determine the input correction kw.  

6. Verify the received control performance by a simulation.  

Example 7.1 

For the SISO linear dynamic controlled system (plant)  
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

  

it is necessary to design the state space controller which ensures for the closed-loop 

control system the poles  

2321  www sss .  

Solution: 

It is obvious that for the controlled system the relations hold  
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cbAx .  

Controllability verification:  
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 0504),(det bAQco The controlled system is controllable.  

Observability verification: 
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 0432),(det T
cAQob  The controlled system is observable. 

From the controlled system transfer function  
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it follows: a0 = 8, a1 = 14, a2 = 7, a3 = 1, b0 = 92, b1 = 6, b2 = − 2, i.e. 

   Tc

T
2,6,92,7,14,8  ca .  

The desired control system characteristic polynomial has the form  

8126)2()( 233  sssssNw ,  

and therefore the vector of its coefficients is  

 Tw 6,12,8a .  

The transformation matrix (7.15) has the form 
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On the basis of the relations (7.14) there is obtained 

  
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Taak .  

The state space model of the closed-loop control system without the input 

correction will be in the form 
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The input correction is given by the formula (7.9) 

23

21
1



bAc w

Twk .  

and the corresponding state space model of the control system with the input correction 

has the form  

 

Fig. 7.4 Step response of a control system with a state space controller and input 

correction – Example 7.1  



VÍTEČEK, A., VÍTEČKOVÁ, M. Closed-Loop Control of Mechatronic Systems 

 

175 

.42

,
23

4

7

20

7

1

,
23

2

7

18
2

14

27

,
23

4

7

36

7

8

321

313

3212

311

xxxy

wxxx

wxxxx

wxxx

w 













  

The step response of the control system with the state space controller and the 

input correction is shown in Fig. 7.4. The initial undershoot is caused by the unstable 

zero ( 446.80
1 s ).  

7.2 State observer 

The state variables in real dynamic system cannot often be measured due to their 

unavailability or high measuring costs. In these cases it is necessary to use the state 

observer (estimator). 

We will focus on the design of the Luenberger asymptotic full order observer 

(further only the observer), i.e. such the observer which estimates the state variables 

which are asymptotically approaching the real state variables. 

Consider the SISO linear dynamical system (7.1), which is controllable, 

observable and strongly physically realizable with the characteristic polynomial (7.2). 

For this linear dynamic system the Luenberger observer has the form (Fig. 7.5) 

),(ˆ)(ˆ

,ˆ)0(ˆ),()()(ˆ)(ˆ 0

tty

tytutt

T
l

ll

xc

xxlbxAx




 (7.16) 

where Al is the square observer matrix of order n [(n×n)], bl – the vector of observer 

input of the dimension n, cl – the vector of observer output of the dimension n, l – the 

vector of observer correction of the dimension n, by „^“ are marked the asymptotic 

estimates of the corresponding variables.  

After the definition of the state error vector ε(t) by the relation 

)(ˆ)()( ttt xx   (7.17) 

and considering the relations (7.1) and (7.16) we get 

)()()(ˆ)()()( tuttt ll
T

bbxAxlcA  . (7.18) 

It is clear that the state error vector ε(t) should not depend on the input variable 

u(t) and the estimate ŷ (t) for the real state x(t) should be c
T
x(t), and therefore it must 

hold 

ccbb  ll , . (7.19) 

If we choose 

T
l lcAA   (7.20) 

then for the assumption (7.19) the linear differential equation 
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000
ˆ),()( xxεεAε  tt l

  (7.21) 

is obtained which describes the time course of the state error ε(t). The initial estimate 

0x̂  is supposed zero in most cases.  

It is clear that for the asymptotic state estimate )(ˆ tx  it must hold 

0 )()()(ˆ tttt xx , (7.22) 

i.e. the linear differential equation (7.21) must be asymptotically stable. 

It is obvious that in order for the state estimate )(ˆ tx  to be sufficiently accurate 

and fast for the changes of the real state x(t), the observer dynamics described by (7.16) 

and expressed by the characteristic eigenvalues of the matrix Al must be faster than the 

dynamics of the observed system (7.1), expressed by the characteristic eigenvalues of 

the matrix A. In the case of state space control the dynamics of the observer must be 

faster than the dynamics of the closed-loop control system. 

The observer characteristic polynomial is 

),())((

)det()(
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1 n
llnl

n
n

ll

pspspsasasas

ssN
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AI
 (7.23) 

Tl
n

lll aaa ],,[ 110  a , (7.24) 

where pi are the characteristic eigenvalues of the matrix Al (the observer poles), a
l
 – the 

vector of the observer characteristic polynomial coefficients.  

Similarly, the characteristic polynomial of the observed system (7.1) is given by 

(7.2) and the vector a is given by its coefficients (7.13b). 

The observer asymptotic stability demands fulfilment of the conditions  

nipi ,,2,1pro0Re   (7.25) 

and furthermore, in order for the observer to have faster dynamics than the observed 

system, its all poles pi must lie to the left of all poles si  of the observed system, i.e.  

i
ni

i
ni

sp RemaxRemin
11 

 . (7.26) 

The convergence )()(ˆ tt xx   will be faster, if there will be greater margin in the 

inequality (7.26). It is often stated ten times, but too great a margin in the inequality 

(7.26) leads to large values of the components li of the state correction vector l, and 

therefore to a large amplification of noise. Therefore, this margin shall be chosen from 

twice to five times (it does not apply for integrating systems). 

The observer poles are usually chosen as multiple real 

ppi  , (7.27) 

and therefore the conditions (7.26) can be written in the form  

i
ni

sp Remax
1 

 . (7.28) 

In this case, the observer characteristic polynomial in accordance with the 

binomial theorem has the form 
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pssN 








 




11

0

)()(  . (7.29) 

Using the observer multiple real pole it ensures the convergence (7.22) with the 

relative damping equal 1. If it is possible to have very suitable multiple pairs, the 

selection of multiple pairs 

pj)1(   (7.30) 

will guarantee that the convergence (7.22) will be ensured with the relative damping 

equal 707.02/1  . This choice ensures fast convergence and also reduces the value of 

p. The partial characteristic polynomial  

22 22 ppss  . (7.31) 

 

 

Fig. 7.5 Block diagram of the Luenberger observer: a) original, b) transformed 
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corresponds to the pair (7.30). 

The block diagram in Fig. 7.5a can be transformed in the equivalent block 

diagram in Fig 7.5b, from which follows the operation of the observer. On the basis of 

the difference of the output variables )(ˆ)( tyty   the state estimate )(ˆ tx  is corrected. It 

is clear that the Luenberger observer is in fact the model of the observed system with 

the running feedback correction 

)](ˆ)([)()(ˆ)(ˆ tytytutt  lbxAx . (7.32) 

It is in principle a control system which tries to nullify the difference )(ˆ)( tyty  , 

and thus the state error vector )(ˆ)()( ttt xx  . Fig. 7.6 shows it clearly. The vector l 

is therefore also called the Luenberger observer gain vector. 

When designing the observer in accordance with the relations (7.16) and (7.19) it 

is necessary to determine the unknown correction vector l. It can be determined by 

comparing the coefficients of the observer characteristic polynomial with the 

corresponding coefficients of the desired observer characteristic polynomial at the same 

powers of the complex variable s. In such a way the system of n linear equations is 

obtained for n unknown components li of the vector l. For large n, this procedure is 

demanding.  

 

 

Fig. 7.6 Interpretation of the Luenberger observer 

The design of the observer can be easily solved if the model of the observed 

system (7.1) has the canonical observer form (3.44) 
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),()()(
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 (7.33a) 
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T
nn bbbb ],,,,[ 1210  ob , (7.33c) 

]1,0,,0,0[ T

oc . (7.33d) 

The canonical observer form can be obtained directly from knowledge of the 

transfer function (3.41) or using the transformation (3.51) 

o
TT

oooooooo tt TccbTbATTAxTx   ,,),()( 111 , (7.34) 

where the transformation matrix of the order n [(n×n)] 

),(1 T
obo cAQQT   (7.35) 

is given by the observability matrix of the observed system (7.1), i.e. (3.37) and the 

matrix Q is given by the relation (7.15c) [see also (3.49)]. 

The observer (7.16) for (7.19) can also be expressed in the canonical observer 

form  

),(ˆ)(ˆ

),()(ˆ)(ˆ

tty

tyutt

o
T
o

oooloo

xc

lbxAx




 (7.36a) 

where 
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A  (7.36b) 

is the square observer matrix of the order n, in which the negative coefficients of the 

observer characteristic polynomial (7.23) appear in the last column. 

The block diagrams for the canonical observer forms are the same as in Fig. 7.5, 

but all vectors and matrices must be provided with subscript "o". 

In accordance with the relation (7.20) we can write 








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

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T
ooolo
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1

1,2

32

21
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100

000

010

001

000













clAA . (7.37) 

From a comparison of the relations (7.36b) and (7.37) it follows 

niaal i
l
ioi ,,2,1for11   ,  

i.e. in accordance with (7.24) and (7.13b) 

aal  l

o , (7.38) 
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where lo is the observer correction vector in the canonical observer form. 

Therefore (7.34) holds, it is possible to write 

)(

1

aaTlTl

lTl



 

l

ooo

oo yy
 (7.39) 

Consider now, that the state space controller uses the state estimate )(ˆ tx  for 

control (Fig. 7.7), i.e. 

)(ˆ)()( ttt T
xbkAxx  .  

 

Fig. 7.7 Block diagram of a control system with a state space controller and 

Luenberger state observer 

Therefore the equality holds 

)()()(ˆ ttt TTT bkxbkxbk  ,  

we can write the state equation of the control system with state space controller and the 

Luenberger observer in the form [see (7.6)] 
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It is the upper block triangular matrix, whose characteristic polynomial is given 

by the relation  
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)det()det()()( lwlw sIsIsNsN AA  . (7.41) 

This means that the dynamic properties of the control system with the state space 

controller and the Luenberger state observers are mutually independent. 

It is the so called separation principle. 

It is very important because the state observer and the state space controller can be 

design independently. We can design a state space controller that ensures the required 

control performance and then we can separately design the Luenberger state observer, 

which ensures the correct state variable estimates. A well-designed state observer 

deteriorates the resulting dynamics of a control system with a state space controller very 

little.  

Procedure: 

1. Check the controllability and observability of the controlled system (plant) 

[relations (3.36) and (3.37)]. 

2. Determine the coefficients of the characteristic polynomials N(s) and Nl(s) 

[relations (7.2) and (7.23)]. 

3. On the basis of the pole of the control system with the largest absolute real part 

determine the multiple pole (7.27) or multiple pairs of poles (7.30) in such a way 

to ensure the sufficiently fast dynamics of the observer.  

4. Compare the coefficients of the observer characteristic polynomial with the 

corresponding coefficients of the desired observer characteristic polynomial at the 

same powers of the complex variable s and the solution of the system of n linear 

equations is obtained for n unknown components li of the vector l. For large n, use 

the transformation matrix (7.35) and the formula (7.39). 

5. Verify by simulating the received estimates of the state variables  

Example 7.2 

For the control system with the state space controller from Example 7.1 it is 

necessary to design the Luenberger state observer. 

Solution: 

In the Example 7.1 it was shown that the controlled system is controllable and 

observable, and that its characteristic polynomial has the form 

)4)(2)(1(8147)det()( 23  ssssssssN AI , 

where 

4,2,1 321  sss   

are the controlled system poles and 

a0 = 8, a1 = 14, a2 = 7      a = [8, 14, 7]
T 

are its characteristic polynomial coefficients or the vector of these coefficients.  

Since 

4max
31




i
i

s  



VÍTEČEK, A., VÍTEČKOVÁ, M. Closed-Loop Control of Mechatronic Systems 

 

182 

it is possible to choose  

8321  pppp  

i.e. the observer characteristic polynomial and its coefficients are 

 51219224)8()()( 2333 sssspssNl  

Tllll aaa ]24,192,512[24,192,512 210  a . 

a) Direct solution 

The observer matrix is  

 
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After unpleasant computations the observer characteristic polynomial  

8221616)143204()742(

)det()(

321321
2
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lllslllsllls

ssN ll AI
 

was determined. 

Comparing the coefficients at the same powers of the complex variable s  for both 

of the observer characteristic polynomials, the system of linear algebraic equations with 

respect to unknown components l1, l2 and l3 of the observer correction vector l was 

obtained, i.e. 

.
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b) Solution by transformation  

In accordance with (7.15c) there is obtained 
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The transformation matrix can now be determined  
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After substituting into the relation on the observer correction vector l, the same 

result  


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)( aaTl
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o  

is obtained as for the direct solution.  

The step response of the control system with a state space controller with and 

without the Luenberger state observer is shown in Fig. 7.8.  

 

Fig. 7.8 Influence of the Luenberger state observer on the step response of a control 

system with a state space controller – Example 7.2  
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APPENDIX – A 

LAPLACE TRANSFORM 

The Laplace transform is a very effective tool for the description, analysis and 

synthesis of continuous (analog) control systems.  

The purpose of a transform is the transfer of a complex problem from the original 

domain in the transform domain, where this problem can be easily solved and then it 

can be transferred back in the original domain in accordance with Fig. A. 1.  

 
Fig. A.1 General diagram for solving problems by means of a transform 

In our case the original domain is the time domain and the transform domain is 

the complex variable domain. For example, a differentiation and an integration in the 

time domain are difficult problems, i.e. they are difficult mathematical operations. 

These difficult operations in the time domain correspond to simple algebraic operations 

in the complex variable domain. Similarly a solution of linear differential equations in 

the time domain corresponds to an easy solution of algebraic equations in a complex 

variable domain. 

The Laplace transform is defined by the formulas 

   de)()(L)(
0

ttxtxsX st



 , (A.1) 

   de)(
πj2

1
)(L)( 1 ssXsXtx st

jc

jc






  , (A.2) 

where s =  + j is the complex variable ( = Re s,  = Im s), t – the real variable (in 

our case – time), x(t) – the original – the real function defined in the time domain for 

t  0,), X(s) – the transform – the complex variable function defined in the complex 

variable domain, 1-=j  – the imaginary unit, L – the operator of the direct Laplace 

transform, L
–1

 – the operator of the inverse Laplace transform, c – the real constant 
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selected so as to the function X(s) has no any singular points in the half plane for  

Re s > c. 

From formula (A.1) it follows that the Laplace transform maps the function of the 

real variable x(t) on the complex function of the complex variable X(s). The value of the 

original x(t) for t  0 represents in physical interpretations a magnitude of the given 

physical quantity in the time t. Therefore the physical dimension of the complex 

variable s is time
–1

. The imaginary part of the complex variable s, i.e.  = Im s has the 

physical interpretation of the angular frequency with the physical dimension time
–1

. The 

time t changes continuously and therefore the Laplace transform is a continuous 

transform. It is obvious that the Laplace transform is first of all suitable for linear 

continuous systems which can be described by means of linear differential, integral and 

integrodifferentilal equations with constant coefficients. 

In order for the time function x(t) to be original it must be:  

a) equal to zero for the negative time, i.e.: 

 
0; 0

0,)(
)(










t

ttx
tx  (A.3) 

b) of the exponential order, i.e. it must satisfy the inequality  

   









    ; 0, ,, 0,>

, e)(

0

0

tM

Mtx
t





 (A.4) 

c) piecewise continuous. 

In most of time functions used in engineering the last two conditions are fulfilled. 

For example, function 
2

e)( ttx  does not hold the second condition.  

The first condition can be held by the multiplication of the given time function by 

the unit Heaviside step defined by the formula  

 
. 0<       0

,0        1
)(



 


t

t
t  (A.5) 

Before using the Laplace transform every continuous function x(t) must be 

multiplied by the unit Heaviside step, and that is why notation x(t)(t) is mostly 

simplified and the symbol (t) is omitted.  

An original is indicated by a small letter and its transform is indicated by a capital 

letter. The relation between an original and its transform is called a correspondence 

and it is written in the form  

)(ˆ)( sXtx  . (A.6) 

The correspondence between an original and its transform is single valued in a 

Laplace transform if we consider time functions equivalent, in this case when their 

values differ by finite values in finite isolated points.  

In the Laplace transform in the case that the function x(t) is not continuous in the 

point t = 0 the initial value x(0) is considered as the right-hand limit. 

)(lim)0()0(
0

txxx
t 

  . (A.7) 
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The same is applied for a derivative of the function x(t) and therefore the values 

,
d

)0(d
,)0(

t

x
x  must be considered as the right-hand limits. 

Example A.1 

By the help of the direct Laplace transform definition formula (A.1) it is necessary 

to determine the transforms of the given time functions (originals):  

a) (t – Td),   b) t,   c) ate ,   d) tsin ,   e) (t) (a, , Td  are the constants). 

Solution: 
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We can see that the time delay Td of the original corresponds to the multiplication 

of the transform by the exponential function 
sTd

e . 
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The integration method by parts was used  
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where u = t, stv  e . 
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    











































0

j

0

j e
j

1
e

j

1

j2

1 tsts

ss




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22j

1

j

1

j2

1





 
















sss
, 

22
ˆsin









s
t . (A.12) 

The Euler formula was used  

 ttt  jj ee
j2

1
sin  . (A.13) 

e) The symbol  (t)  represents the unit Dirac impulse defined by the relations  

     

  , 0for0

, 0d








tt

xttxt




 (A.14) 

     1edeL 0

0

 


 ttt st , 

  1̂t . (A.15) 

Example A.2 

By the help of the direct Laplace transform definition formula (A.1) it is necessary 

to determine the transforms of the given mathematical operations: a)    txatxa 2211  , 

where a1, a2  are any real or complex constants   b) 
 
t

tx

d

d
,  c)  

t

x
0

d . 

Solution: 

a)             




0

22112211 deL ttxatxatxatxa st
 

       sXasXattxattxa stst
2211

0

22

0

11 dede  






, 

       sXasXatxatxa 22112211 ˆ  . (A.16) 

The derived correspondence (A.16) expresses the linearity of the Laplace 

transform. 

b) 
   

     
















0
0

0

deede
d

d

d

d
L ttsxtxt

t

tx

t

tx ststst    0xssX  , 

 
   0ˆ

d

d
xssX

t

tx
 . (A.17) 

The integration method by parts (A.10) was used, where 
 
t

tx
vu st

d

d
,e    . 

Similarly the transform from the n-th order derivative can be determined  
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 
   

   
1

1
21

d

0d

d

0d
0ˆ

d

d



 

n

n
nnn

n

n

t

x

t

x
sxssXs

t

tx
 . (A.18) 

For zero initial conditions a simple and very important formula holds 

 
 sXs

t

tx n

n

n

̂
d

d
. (A.19) 

We can see that the n-th order derivative in the time domain corresponds to the 

multiplication of the transform by the n-th power of the complex variable s in the 

complex variable domain.  

c) 

    

















 




0 00

deddL txx st
tt

     










































000

de
1

e
1

d t
s

tx
s

x stst
t

  

      sX
s

ttx
s

st 1
de

1
0

0

 


 , 

   sX
s

x
t 1

ˆd
0

  . (A.20) 

The integration method by parts (A.10) was used, where   st
t

vxu   e,d
0

  . 

We can see that the integration in the time domain corresponds to the division of 

the transform by the complex variable s in the complex variable domain.  

In the Examples A.1 and A.2 transforms of some simple time functions were 

derived on the basis of the direct Laplace transform definition formula (A.1). The use of 

the inverse Laplace transform definition formula (A.2) is time consuming and labour 

intensive. It demands very good knowledge of the theory of complex variables. 

Therefore the Laplace transform definition formulas (A.1) and (A.2) are not often used 

in practice. The Laplace transform tables are used advantageously in practice. The 

basic correspondences are given in these tables, see Tabs A.1 and A.2.  

Example A.3 

On the basis of the correspondence [see (A.11)] 

as

at


 1
ˆe  (A.21) 

and properties of the Laplace transform from Tab. A.1 it is necessary to derive further 

correspondences.  

Solution: 

a) For  a = 0  (property 19 in Tab. A.1) from the correspondence (A.21) we can 

obtain  

s

1
ˆ1e0   , 
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 
s

t
1

̂ . (A.22) 

b) On the basis of the linearity (property 3 in Tab. A.1) and the correspondences 

(A.21) and (A.22) we can write  

 
 ass

a

ass
t at





  11

ˆe  , 

 ass

aat


 
ˆe1 . (A.23) 

c) By differentiation of the correspondence (A.21) with respect to the parameter a  

(property 20 in Tab. A.1) we obtain  

 
 2

11

d

d
ˆee

d

d

asasa
t

a

atat













   , 

 2
1

ˆe
as

t at


  . (A.24) 

d) From the correspondence (A.24) for  a = 0  (property 19 in Tab. A.1) we obtain 

[see (A.9)] 

2

1
ˆ

s
t  . (A.25) 

e) On the basis of the integration in the time domain (property 12 in Tab. A.1) we 

can get from the correspondence (A.25) the new correspondence 









 2

0

11
ˆd

ss

t

 , 

3

2 1
ˆ

2 s

t
 . (A.26) 

f) From the correspondence (A.26) by the help of property 8 in Tab. A.1 we 

obtain  

 3
2 1

ˆe
2 as

t at


 . (A.27) 

g) From the correspondence (A.21) for  a =  j  we get  





j

1
ˆe j

s

t  . 

On the basis of the Euler formulas [see also (A.13)] 

 ttt  jj ee
j2

1
sin   ,         ttt  jj ee

2

1
cos  . 

we obtain the further two important correspondences [compare with (A.12)]: 
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22j

1

j

1

j2

1
ˆsin

























sss
t  , 

22
ˆsin









s
t , (A.28) 

22j

1

j

1

2

1
ˆcos





















s

s

ss
t  , 

22
ˆcos







s

s
t . (A.29) 

h) We directly get two further important correspondences on the basis of the last 

two correspondences (A.28) and (A.29) and  property 8 in Tab. A.1  

  22
ˆsine









as
tat , (A.30) 

  22
ˆcose









as

as
tat

. (A.31) 

We can easily verify by comparison with Tabs A.1 and A.2 that all the derived 

correspondences are correct. In the similar way it is possible to obtain further 

correspondences. We can see that by making practical use of the Laplace transform it is 

enough to have knowledge of a few basic properties and several important 

correspondences.  

Determining originals from transforms  

We can directly use the Laplace transform tables in cases where we find originals 

or transforms in the suitable forms. We mostly make do with simple modifications. 

Problems can arise for the inverse Laplace transform because some transforms are 

complex and we must decompose them to their simplest expressions which can be 

found in the Laplace transform tables. We very often use partial-fraction expansion and  

residual methods.  

In practical cases the transform has mostly the form of the strictly proper 

function 

 
 
 

.,
01

01 mn
asasa

bsbsb

sN

sM
sX

n
n

m
m 









 (A.32) 

If the denominator degree n is not greater than the nominator degree m it is 

necessary to divide the nominator by the denominator.  

We can simplify the transform in the form of the strictly proper function (A.32) 

by the partial-fraction expansion in expressions which may be found in the Laplace 

transform tables.  

For the polynomial in the denominator (A.32) the relation holds 

      nn
n

n ssssssaasasasN   2101 , (A.33) 
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where s1, s2, ..., sn  are the roots of the polynomial N(s) and they are simultaneously the 

poles (singular points) of the transform X(s). 

The poles si  may be simple or multiple. At first consider the simple poles, which 

can be real or complex. If they are complex then they arise in complex conjugate 

couples, e.g.  

.j,j 1   ii ss  (A.34) 

For the complex conjugate couple (A.34) the relation holds 

   .2 2222
1 dcssssssss ii     (A.35) 

The couple of the strictly imaginary poles  

 j,j 1  ii ss  (A.36) 

is the special case of (A.34) or (A.35) for   = c = 0. 

Now consider the multiple poles. For the r-multiple real pole  si  it is possible to 

write  

 riss  . (A.37) 

Similarly in accordance with (A.35) we may also write for the r-multiple complex 

conjugate couple poles si  and  si+1  

      .2
1

rr

i

r

i dcssssss    (A.38) 

The transform X(s) of the strictly proper function (A.32) for the given types of  

poles can be written in the form (for  an = 1) 

 
 
 

 

     
,

22 qr
fessdcssbsas

sM

sN

sM
sX


  (A.39) 

where (s – a) corresponds to the simple real pole a, 

 (s – b)r corresponds to the r-multiple real pole  b, 

 )( 2 dcss   corresponds to the simple complex conjugate couple  

 dcc 4
2

1 2  , (A.40) 

 qfess )( 2   corresponds to the q-multiple complex conjugate couple 

 fee 4
2

1 2  . (A.41) 

The transform X(s) expressed by the relation (A.39) may be written in the 

decomposed form  

 
   

,
)()( 222

22

2

11

2

2

21

q

qq

r

r

fess

FsE

fess

FsE

fess

FsE

dcss

DCs

bs

B

bs

B

bs

B

as

A
sX







































 (A.42) 

where constants  A, B1, B2, ..., Br, C, D, E1, E2, ..., Eq, F1, F2, ..., Fq  are determined, 



VÍTEČEK, A., VÍTEČKOVÁ, M. Closed-Loop Control of Mechatronic Systems 

 

192 

e.g. by the substitution method, the method of indefinite coefficients or the residual 

method.  

The introduced procedure is called the partial-fraction expansion.  

Example A.4 

It is necessary to find the original  x(t) from the its transform 

 
 22

23

1

1472






ss

sss
sX . (A.43) 

Solution: 

The transform (A.43) is a strictly proper function and therefore in accordance with 

(A.42) we can write  

   2
21

2

21

22

23

111

1472











s

B

s

B

s

A

s

A

ss

sss
. (A.44) 

a) Substitution method 

After multiplying the equation (A.44) by the denominator of its left side we get  

      2
2

2
1

2

2

2

1
23 1111472 sBssBsAssAsss  . (A.45) 

The equation (A.45) holds for any s and therefore it must hold also for the poles 

of the transform X(s), i.e.: 

.21

,10

22

21

Bss

Ass




 

As further values of the complex variable s we select 

2121 244141 BBAAs   

and using the determined constants A2,  B2  after modification we get 

42 11  BA . 

We select further 

2121 44252 BBAAs   

and similarly as in the previous case we use the determined constants A2  and  B2, and 

after modification we get  

22 11  BA . 

By solving the simple equation system  

42 11  BA , 

22 11  BA  

we obtain  A1 = 2  a  B1 = 0. 

The partial-fraction expansion of the transform (A.43) has the form 
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 
 22

1

212




sss
sX . 

By the help of the Laplace Transform Table A.2 we easily obtain the original 

    .0,e22e22   tttttttx tt  (A.46) 

b) Method of indefinite coefficients 

We modify the relation (A.45) with respect to the powers of the complex variable 

s and we get 

      221
2

2121
3

11
23 221472 AsAAsBBAAsBAsss  . 

The coefficients for the same powers of the complex variable s must be the same 

and therefore these relations hold  

.1

,24

,27

,2

2

21

2121

11

A

AA

BBAA

BA









 

By solving the equation system we get the coefficient values: A1 = 2, A2 = 1, 

B1 = 0  and  B2 = 2. The next steps are identical like in case a. 

c) Residual method 

We use the formula 22 (row) from Tab. A.1  

 
 

    str

ir

r

ssi i

sXss
sr

tx i

i

i

i

e
d

d
lim

!1

1
1

1










 , 

where  i = 1, 2; s1 = 0, r1 = 2; s2 = – 1, r2 = 2 (n = r1 + r2 = 4). 

After substitution (A.43) we successively obtain:  

 
 








 

















st

s

st

s s

sss

ss

sss

s
tx e

1472

d

d
lime

1

1472

d

d
lim

2

23

12

23

0
 

     



























ststst

s
t

s

sss

s

sss

s

ss
e

1

1472
e

1

1472
2e

1

4146
lim

2

23

3

23

2

2

0
 








 










ststst

s
t

s

sss

s

sss

s

ss
e

1472
e

1472
2e

4146
lim

2

23

3

23

2

2

1
 

     ttt tt e2e4e424 .e22 ttt   

We can see that the result is the same like (A.46). 

Example A.5 

It is necessary to determine the original x(t)  for the transform  
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 
 

.
136

13223
2

2






sss

ss
sX  (A.47) 

Solution: 

The polynomial in the denominator of the transform (A.47) has complex 

conjugate poles and therefore its partial-fraction expansion has the form  

 
.

136136

13223
22

2










ss

CBs

s

A

sss

ss
 (A.48) 

a) Substitution method 

We multiply the equation (A.48) by the denominator of its left side and then we 

get  

    .13613223 22 sCBsssAss   (A.49) 

This equation holds for any s, therefore we select 3 different values and then we 

obtain 

.14861

,1820381

,1131301







CBCBAs

CBCBAs

AAss

 

We get the linear equation system  

,18CB  

,14CB  

which has the solution  B = 2  and  C = 16. 

In accordance with (A.47) and (A.48) we can write  

  .
136

1621
2 




ss

s

s
sX  

Now we use results (A.30) and (A.31) from the example A.3.  

 
 
 

 
   

.
23

52

23

321

23

52321
222222
















ss

s

ss

s

s
sX  

and we obtain the original 

   

.0,2sine52cose21

2sine52cose2

33

33









ttt

ttttx

tt

tt
 (A.50) 

b) Method of indefinite coefficients 

The relation (A.49) after modification has the form 

    .13613223 22 AsCAsBAss   

The coefficients at the same powers must be the same and therefore it may be 

written  
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,3 BA  

,622 CA  

.1313 A  

From this equation system there is the result  A = 1,  B = 2  and  C = 16. 

The next steps are the same as in previous case a). 

The use of the residual method for complex conjugate poles is more elaborate and 

therefore it is not used in this case.  

Example A.6 

It is necessary to derive formulas for the initial and final values of the time 

original (property 16 and 17 in Tab. A.1).  

Solution: 

a) Initial value 

We expand the original x(t)  in the MacLaurin series 

   
     




 32

!3

0

!2

0

!1

0
0 t

x
t

x
t

x
xtx  

and then we use the Laplace transform  

 
       





432

0000

s

x

s

x

s

x

s

x
sX  

It is obvious that after multiplication of the left and right side by the complex 

variable s the relation holds (if it exists)  

   ssXx
s 

 lim0 . (A.51) 

b) Final value 

For the transform of the derivative  tx  it holds [see (A.17)]: 

        0deL
0

xssXttxtx st  


 , 

      0limdelim
0

0
0

xssXttx
s

st

s








  , 

     0limd
0

0

xssXttx
s






  , 

       0lim0
0

xssXxx
s




. 

Therefore we obtain (if it exists)  

   ssXx
s 0
lim


 . (A.52) 
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Example A.7 

It is necessary to derive the transforms of the original multiplied by the 

exponential function (complex shifting in the complex domain) and the delayed original 

(property 8 and 6 in Tab. A.1). 

Solution: 

a)  Multiplication by exponential function 

            asXuXttxttxtx uttasat  







00

dedeeL  , 

   asXtxat ̂e . (A.53) 

The substitution  u = s  a  was used. 

b)  Delayed original  x(t – a) ,   a  0 

 
 









,

,0

atatx

at
atx  

        

   ,edee

dedeL

0

00

sXuux

uuxtatxatx

assuas

ausst



















 

   sXatx as eˆ . (A.54) 

The substitution  u = t – a  was used. 
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Tab. A.1 Laplace transform - definition formulas and basic properties  

 Definition formulas 

1       



0

deL ttxtxsX st  

2       




 
jc

jc

st ssX
j

sXtx de
2

1
L 1


 

 Linearity 

3         sXasXatxatxa 22112211L   

 Similarity 

4    0,L 







 a

a

s
Xatax  

 Convolution in time domain 

5                sXsXsXsXdxtxdxtx
tt

1221

0

12

0

21 LL 

















    

 Real shifting on the right in time domain (time delay) 

6      0,eL   asXatx as  

 Real shifting on the left in time domain (lead) 

7        0,deeL
0









 

 attxsXatx
a

stas  

 Complex shifting in a complex domain 

8     asXtx at eL  

 Derivative in time domain 

9 1-st order derivative              
 

   0
d

d
L xssX

t

tx










 

10 n-th order derivative              
 

 
 















 n

i
i

i
inn

n

n

t

x
ssXs

t

tx

1
1

1

d

0d

d

d
L  

 Derivative in a complex domain 

11   
 
s

sX
ttx

d

d
L   
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 Integral in time domain 

12    sX
s

x
t 1

dL
0









   

 Integral value 

13    sXttx
s 0

0

limd
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
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14  
 
s
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s d

d
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0
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
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 Periodical function transform 

15         
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


e1

1
2L         a – period,  a > 0 

 Initial value in time domain  (if it exists) 

16      ssXtxx
st 




limlim0
0

 

 Final value in time domain  (if it exists) 

17      ssXtxx
st 0
limlim


  

 Mathematical operation with respect to an independent parameter 

18     asXatx ,,L   
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aaaa

,lim},limL{
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
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21     










 2

1

2

1

d,d,L
a

a

a

a

aasXaatx  

 Inverse transform by residues 
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ri – the multiplicity of transform pole si 


i

irn

 

– the polynomial degree in the transform denominator 
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Tab. A.2 Laplace transform - correspondences 

 Transform X(s) Original x(t) 

1 s  t  

2 1  t  
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 Transform X(s) Original x(t) 
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 Transform X(s) Original x(t) 
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b1, b2 – the real constants,   Ti > 0, i = 0, 1,... 
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