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PREFACE 

 

The major mission of this textbook is to highlight the importance of basic 

principles of an automatic control by covering the most important areas from 

analog automatic control, digital control, and two- and three-position control. 

Hopefully, this textbook will stimulate new ideas by giving the reader basic 

points of view of control system theory as well as appreciation of its use and 

adaptability into complex systems. 

The contents of this textbook originate in many texts and papers written by 

the authors on their own, as well as hours of working on their approaches to the 

basic methodology and experience with teaching it to students of control 

engineering.  

Since the textbook is concerned with the basic concepts of automatic 

control, therefore the textbook does not have any given references itself. For 

deepening your knowledge and extending your study materials the authors 

recommend the references mentioned below for further reading: 

DORF, R.C. – BISHOP, R. Modern Control Systems (12th ed.). Prentice-Hall, 

Upper Saddle River, New Jersey 2011 

FRANKLIN, G.F. – POWELL, J.D. – EMAMI-NAEINI, A. Feedback Control of 

Dynamic Systems (4th ed.). Prentice-Hall, Upper Saddle River, New Jersey 

2002 

THE authors thank Prof. Ing. Zora Jančíková, CSc. for her valuable 

suggestions.  

Many key control techniques in use today have been founded on the very 

basic principles of the past and we must not forget those ingenious individuals 

of old who solved control problems with truly original solutions. The textbook 

would like to point out these ideas which blended into our technologies and are 

now taken for granted not only by students interested in control engineering. 

Good technical ideas are precious and need to be respected by properly obeying 

the basics when developing modern technological systems. If you enjoy reading 

the book then the authors’ efforts were worthwhile. 
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1 INTRODUCTION 

 

We meet with “control” or “drive” every day and all the time. The word 

“control” is used in common cases, but the word “drive” is often used to mean 

manual control. We drive (ride) a bicycle, a motorcycle, a car, etc. In these 

cases, it is a manual control. An example of the simplified control of a car is 

shown in Fig. 1.1. A driver tries to keep a desired path that is a desired lateral 

displacement w(t) on the right side of the road with a steering wheel angle u(t) 

regardless of disturbances v(t), i.e. current car velocity, the road condition and 

its behavior (slopes, bends, zigzag bends etc.). The effect of his driving is the 

true lateral displacement from the middle of the right side of the road y(t), see 

Fig. 1.2.  

 

Fig. 1.1 – Control of car on a road 

 

 

Fig. 1.2 – Courses of a current y(t) and desired w(t) car displacement from the 

middle of the right side of the road  

The driver evaluates the current lateral displacement y(t) and by suitably 

turning the steering wheel with angle u(t) he tries to minimize the difference  

0)()()(  tytwte  (1.1) 

which can be written in the equivalent form  

)()( twty   (1.2) 

The relations (1.1) or (1.2) equivalently express the control objective. 

Driver Car on road 

Desired lateral 

displacement 

)(tw  

Steering 

wheel angle 

)(tu  

Current lateral 

displacement 

)(ty  

Disturbance 

)(tv  

Road 

)(ty  

)(tw  



6 

We deal with automatic control so often that we do not perceive it. There 

are controls for an iron´s temperature, the water temperature and level control in 

the washing machine, the refrigerator and freezer temperature control, the room 

temperature control, etc. in our homes. 

Iron temperature control is shown in Fig. 1.3. The controlling device is 

made from a bimetal strip, which bends when heated and the strip's bending 

measures the current temperature of a heating body y(t). When this temperature 

is lower than the adjusted desired temperature w(t), then the bimetal strip 

switches on the heating body and it is supplied by a voltage u(t) (mostly 230 V). 

When reaching the desired temperature )()( twty  , the bimetal strip switches 

off the heating body and it begins to cool down. After decreasing the heating 

body temperature y(t) below the desired temperature w(t), the bimetal strip 

switches on again. This process repeats.  

 

Fig. 1.3 – Iron temperature control  

In this case the disturbances v(t) can be e.g. the different moisture and 

temperature of laundry. If the disturbances v(t) are constant, then the heating 

and cooling processes are periodic.  

It is obvious that in this case the bimetal strip fulfills these conditions (1.1) 

or equivalently (1.2). The bimetal strip of an iron is one of the simplest 

controlling devices. Therefore it operates in two states “switch-on” and “switch-

off”, it is called an“ON-OFF” controller or two-position controller.  

There are different control systems in the present-day radio and television 

sets, e.g. the automatic volume control, the automatic frequency control, voltage 

and current stabilization, automatic brightness control, etc. Nowadays every 

compact camera contains automatic focusing, automatic image stabilization, the 

automatic white balancing, an automatic aperture and shutter setting, the 

automatic tracking of an object, etc. 

Very complex automatic control systems are especially used in automobile, 

aviation, rocket and military technology.  

Both control systems in Figs 1.1 and 1.2 can be generally presented by a 

block diagram in Figs 1.4 and 1.5, where in the first case (Fig. 1.1) the 

controller is implemented by a driver – a man (human) and in the second case 

Bimetal 
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Heating 

body 

)(tw  

Supply 

voltage 

)(tu  

Current 

temperature 

)(ty  

Disturbances 

)(tv  
Desired 

temperatur

e 
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(Fig. 1.2) the controller is implemented by the bimetal strip – an automatic two-

position controller.  

It is obvious that the sensor (measuring device) must be accurate and fast 

and that is why its behavior is very often neglected or added to a plant or 

process (controlled device). The control cannot be more accurate than the 

sensor's accuracy is. Similarly, the behavior of an actuator (actuating device) 

is added to a plant or to a controller (the controlling device) and a comparative 

element is set apart in a separate summing node (a comparison device). The 

disturbances are often aggregated into one or two selected disturbances. Then 

the closed-loop control system or the feedback control system can be 

obtained, where the desired output w(t) is the desired or reference variable, the 

current controlled output y(t) is the controlled variable, the controller output 

u(t) is the control, actuating or manipulated variable, the summing node 

output e(t) is the control error, the aggregated disturbances v1(t) and v2(t) are 

the disturbance variables.  

 

Fig. 1.4 – General control system 

 

 

Fig. 1.5 – Closed-loop control system 

 

Controller + 
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Negative feedback is very important, because determination of the control 

error e(t) wasn’t enabled and the controller could not hold the demand (1.1) or 

(1.2).  

The demand (1.1) or (1.2) is called a control objective. Two controller 

tasks follow from it. The first task is tracking a desired variable by the 

controlled variable – the servo problem (set-point tracking), and the second 

task is the rejection of the disturbances – the regulatory problem. The rejection 

of a disturbance which is caused in the input of a process/plant is the most 

frequent problem considered in the second case.  

An open-loop control system or the feedforward control system can be 

used in some simple cases, when the disturbances are negligible or they have 

not influenced a control process. They are mostly very simple logical systems, 

e.g. the traffic control, the washing machine etc. A traffic control is shown in 

Fig. 1.6). The traffic light sequence and switching (green, amber, red) are 

preprogrammed in accordance with the expected traffic flow depending on the 

time of day and the kind of day (working day, holiday etc.). A simplified block 

diagram of an open-loop system is shown in Fig. 1.7.   

The behavior of both open-loop and closed-loop control systems is 

explained below.   

 

Fig. 1.6 – Traffic Flow Control 

 

Fig. 1.7 – Open-loop control system 

For example, consider the simple control systems in Fig. 1.8, where a 

controller's behavior is expressed by the gain 0
P
K  and a plant by the gain 

01 k  too. 

We can perform an analysis of both open-loop (Fig. 1.8a) and closed-loop 

(Fig. 1.8b) control systems 
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a) 

 
b) 

 

Fig. 1.8 – A control system: a) open-loop structure, b) closed-loop structure 

a) Open-loop control system (Fig. 1.8a) 

In accordance with Fig. 1.8a we can write  

)()()(
1

tvtwkKty
P

  (1.3) 

On condition that the disturbance v(t) doesn’t cause a problem to an open-

loop control system, i.e. v(t) = 0, it is 

1

1
)()(

k
Ktwty
P
  (1.4) 

which follows from the control objective (1.2). 

If the disturbance v(t) ≠ 0, it will cause a problem to an open-loop control 

system (Fig. 1.8a) and at the same time (1.4) will hold, then there can be 

obtained 

)()()( tvtwty   (1.5) 

We can see that the open-loop control system is unable to reject the 

disturbance v(t), i.e. its influence on the controlled variable  y(t).  

If the behavior of a plant changes or is known with an accuracy 1k  then 

(1.5) has the form 

)()(1)()()(
1

1

1

11 tvtw
k

k
tvtw

k

kk
ty 







 



  (1.6) 

From (1.6) it is obvious that the changes of a plant (uncertainty) 1k  

fully come out on the controlled variable y(t). 

For example, for k1 =1 and 5.0/
11
 kk  (50 %) there is obtained 

)()()5.01()( tvtwty   

)(tw  
PK  1k  

)(tu  

)(tv  
)(ty  

)(te  

PK  1k  

)(tw  
)(tu  

)(tv  
)(ty  
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We can see that the change of the plant behavior and the disturbance fully 

come out on the controlled variable. It is obvious that the open-loop structure is 

suitable only for cases when the plant behavior is invariant and disturbances are 

negligible.  

b) Closed-loop control system (Fig. 1.8b) 

We can write on the basis of Fig. 1.8b 

 )()]()([)(
1

tvtytwkKty
P

 

)(
1

1
)(

1
1

1
)(

1

1

tv
kK

tw

kK

ty
P

P






  (1.7) 

From (1.7) for 


1

or kKK
PP

 (1.8) 

relation 

)()( twty   (1.9) 

is obtained. 

We can see that for the sufficient high controller gain KP or the product 

KPk1 the control objective (1.2) holds for a plant with an arbitrary finite gain k1 

and at the same time the negative influence of a disturbance v(t) on a controlled 

variable y(t) will be rejected. The same conclusion holds for plant changes or 

uncertainties expressed by an increment of plant gain 1k :  

)(

11

1
)(

1

1

1

1
)(

1

1

1

1

1

1

tv

k

k
kK

tw

k

k
kK

ty

P

P








 













 


  (1.10) 

If conditions (1.8) are fulfilled then (1.9) is obtained again. 

For example, for KP = 100, k1 = 1 and 5.0/
11
 kk  (50 %) there is obtained 

on the basis of (1.10) 

)(
0097.0

0033.0
0099.0)(

0097.0

0033.0
9901.0)( tvtwty 

























  

We can see that the control objective (1.2) 

)()( twty   

holds with an accuracy better than 2 % even for a relatively small value of a 

controller gain KP = 100 and for ± 50 % changes of plant behavior, i.e. its gain 

k1. At the same time the negative influence of a disturbance v(t) is reduced to 

less than 2 % as well. 
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A closed-loop control system enables superior control considerably more 

than the open-loop control system. It is caused by the existence of the negative 

feedback, which is a necessary condition not only for high-quality control but 

for any meaningful activity of living beings and thus for a man. Living isn’t 

possible without the existence of negative feedback.  

It is very important that the high controller's gain KP occurs in the forward 

path (branch). 

A closed-loop control system even works out the non-linear plant. In Fig. 

1.9 there is a control system with a non-linear plant, which is described by a 

non-linear function  

)()]([)( tvtufty   (1.11) 

 

Fig. 1.9 – A closed-loop control system with a non-linear plant 

In accordance with Fig. 1.9, we can write 

)()()()()()( tetwtytytwte   (1.12) 

PP
K

tvtyf

K

tu
te

)]()([)(
)(

1





 (1.13) 

After substituting (1.13) in (1.12) there is obtained 

P
K

tvtyf
twty

)]()([
)()(

1





 (1.14) 

It is obvious that the relation holds 

)()( twtyK
P

  

We can see again that for a satisfactory high controller gain KP the control 

objective (1.2) is available even for a non-linear plant and for the negative 

influence of the disturbance (1.11).  

 

At the end of this chapter the general system in Fig. 1.10 is considered. We 

can symbolically describe the system by a following relation 

   tSuty   

where S is an operator, which symbolically expresses the system’s behavior. 

)(tw  
PK  )]([ tuf  

)(tu  

)(tv  
)(ty  

)(te  
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Fig. 1.10 – General system 

 

 

 

Fig. 1.11 – Basic problems in automatic control: a) analysis, b) synthesis,  

c) identification, d) control  

The basic problems with a system in Fig. 1.10 in automatic control are: 

The analysis problem. The system’s behavior S and the input u(t) are given 

and we want to determine output y(t). The solution to this problem is generally 

unique. 

The synthesis problem. The input u(t) and the output y(t) are given and we 

want to determine (design) a corresponding system’s behavior S. The solution to 

this problem isn’t unique and it demands a further criterion for selecting a 

suitable system’s behavior S. 

The identification problem. The input u(t) is given and the system is given, 

but its behavior S isn’t known. We can measure the output y(t) and we want to 

determine the mathematical model of a system’s behavior S. This problem 

relates to the black (color, gray) box problem. 

The control problem. The system’s behavior S is known and the desired 

output y(t) is given and we want to determine a corresponding input u(t), which 

ensures the desired output y(t). 

S  
?)( tu  )(ty  

d) 

?S  
)(tu  )(ty  

c) 

measured 

?S  
)(tu  )(ty  

b) 

S  
)(tu  ?)( ty  

  

a) 

S  
Input Output 

)(tu  )(ty  
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2 MATHEMATICAL MODELS OF SYSTEMS 

 

We will consider the SISO (single-input single-output) system (Fig. 2.1).  

 

Fig. 2.1 – Block representation of the SISO system 

The dependence of a system output y(t) on its input u(t) expresses its static 

and dynamic behavior. The time changes on a system input are called the action 

or excitation and a corresponding system output time changes are called 

reaction or response. A real, existing system has to hold the physical 

realizability condition or the causality condition, which means that the 

reaction – consequence cannot precede the action – cause. 

The control systems are analyzed on their mathematical models. An 

analogy is employed, which keeps the most important behavior of original 

systems. If there is no difference between the original system and its 

mathematical model behaviour and it does not cause any confusion, then a 

mathematical model is called the original system. The input time functions are 

called – inputs, input signals or input variables and similarly the output time 

functions are called – outputs, output signals or output variables.  

A mathematical model of the SISO system has often a form of a 

differential equation in a time domain  

0)](),(,),(),(),(,),([
)()(

tutututytytyg
mn   (2.1) 

with initial conditions 

)1(

0

)1(

00

)1(

0

)1(

00

)0(,,)0(,)0(

)0(,,)0(,)0(









mm

nn

uuuuuu

yyyyyy




 (2.2) 

mj
t

tu
tututu

ni
t

ty
tytyty

j

j
j

i

i
i

,,2,1;
d

)(d
)(),()(

,,2,1;
d

)(d
)(),()(

)()1(

)()1(









 (2.3) 

where u(t) is an input variable, y(t) – an output variable, n – an order of a 

differential equation and at the same time the order of an original system, g – is 

generally a non-linear function.  

If a mathematical model (2.1) satisfies the inequality 

System

m 

Input Output 

)(tu  )(ty  
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mn   (2.4) 

then the mathematical model is strongly physically realizable.  

For 

mn   (2.5) 

it satisfies only a weak physical realizability condition and for 

mn   (2.6) 

the mathematical model isn’t physically realizable, i.e. a mathematical model 

similar to this doesn’t correspond to any real existing system. 

If on the basis of a differential equation (2.1) for 

)(lim

,,2,1;0)(lim

)(lim

,,2,1;0)(lim

)(

)(

tuu

mjtu

tyy

nity

t

j

t

t

i

t





















 (2.7) 

an equation can be obtained  

)(ufy   (2.8) 

then this equation describes the static characteristic of a given model and, at 

the same time, the original system (Fig. 2.2). 

 

Fig. 2.2 – Non-linear static characteristic 

A static characteristic expresses the dependency between an output y and 

input u variables in a steady state. 

The course of an output y(t) or input u(t) variables between two steady 

states is called a transient process.  

If in the equation (2.1) the derivatives (2.3) don’t arise, i.e.. 

0)](),([ tutyg    or   0),( uyg  (2.9) 

u  

y  

)(ufy   

0  
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then a mathematical model (2.9) describes a static system. The derivatives (2.3) 

are basic attributes for dynamic behaviors, and therefore a differential equation 

(2.1) describes a dynamic system.  

2.1 Linear Mathematical Models 

The linear models create a very important class of mathematical models. 

Their most important behavior is linearity. The linearity of a dynamic system in 

Fig. 2.1 can be expressed by two partial behaviors:  

additivity (superposition): 

)()()()(
)()(

)()(
2121

22

11
tytytutu

tytu

tytu









 (2.10a) 

homogeneity 

)()(,)()( taytautytu   (2.10b) 

Both partial behaviors (2.10a) and (2.10b) can be expressed together  

)()()()(
)()(

)()(
22112211

22

11
tyatyatuatua

tytu

tytu









 (2.11) 

where a, a1, a2 are any constants; u(t), u1(t), u2(t) – the input variables; y(t), y1(t), 

y2(t) – the output variables. 

The linearity of a dynamic system means that a weighting sum of output 

variables corresponds to a weighting sum of input variables.  

Another very important behavior of linear dynamic models (systems) is: 

every local behavior of a linear dynamic system is at the same time its global 

behavior.  

A linear SISO system can be described in the time domain by a linear 

differential equation with constant coefficients (with lumped parameters)  

)()()()()()( 01

)(

01

)(
tubtubtubtyatyatya

m

m

n

n    (2.12) 

with initial conditions 

)1(

0

)1(

00 )0(,,)0(,)0(



nn

yyyyyy   (2.13a) 

)1(

0

)1(

00 )0(,,)0(,)0(



mm

uuuuuu   (2.13b) 

A static characteristic of a linear dynamic system is a straight line, which 

goes through a co-ordinate´s origin (Fig. 2.3). It can be obtained simply from a 

differential equation (2.12) for (2.7) 

0),()( 0

0

0  atu
a

b
ty  (2.14) 
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Fig. 2.3 – Linear static characteristic 

If a linear dynamic system is described by a linear differential equation 

(2.12), then for the given initial conditions (2.13) and the given course of an 

input variable u(t), it is possible to determine the course of output variable y(t). 

This task is very demanding in a time domain, because it requires very good 

knowledge of a differential equation theory. The use of the Laplace transform is 

considerably easier. After an application of Laplace transform on a linear 

differential equation (2.12) together with initial conditions (2.13) an algebraic 

equation is obtained  

)()()()()()( 0101 sRsUbsbsbsLsYasasa
m

m

n

n   (2.15) 

where Y(s) is an output variable y(t) transform; U(s) – an input variable u(t) 

transform; s – a complex variable in Laplace transform; L(s) – a polynomial of 

the highest degree (n – 1), which is determined by initial conditions (2.13a); 

R(s) – a polynomial of the highest degree (m – 1), which is determined by initial 

conditions (2.13b). 

The dimension of complex variable s is [s
-1

], generally [time
-1

]. 

The transform of the solution can be determined from (2.15)  

)(

)()(
)(

)(

)(
)(

sN

sRsL
sU

sN

sM
sY


  (2.16) 

)())(()( 2101 nn

n

n ssssssaasasasN    (2.17) 

)())(()( 2101 mm

m

m zszszsbbsbsbsM    (2.18) 

where N(s) is a characteristic polynomial of the degree n of a linear 

differential equation (2.12) (as well as a linear dynamic system), which is 

determined by its left-hand side coefficients; M(s) – a polynomial of the degree 

m, which is determined by its right-hand side coefficients; si –roots of the 

characteristic polynomial (2.17), zj –roots of a polynomial (2.18). 

The original of the solution y(t) for t ≥ 0 can be obtained from the 

transform of the solution (2.16) on the basis of Laplace transform  

u  

y  

u
a

b
y

0

0


 

0  
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 )(L)(
1

sYty


  (2.19) 

The procedure is shown in Fig. 2.4.  

The first part of the solution (2.16) is a transform of the response to an 

input variable u(t), the second part of the solution (2.16) is the response to initial 

conditions (2.13). 

On the assumption that initial conditions are zeros, i.e.  

0)(and0)(  sRsL  

the transform of the solution has a form 

)()()( sUsGsY   (2.20) 

where the expression 

)(

)(

)(

)(
)(

01

01

sN

sM

asasa

bsbsb

sU

sY
sG

n

n

m

m 
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 (2.21a) 

is the transfer function of a linear dynamic system. 

 

Fig. 2.4 – Solving a differential equation by the Laplace transform 

The physical realizability conditions are given by relations (2.4) – (2.6). 
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A transfer function (2.21a) expresses a mathematical model of a given 

linear dynamic system for zero initial conditions in a complex variable domain 

and can be presented by the block diagram in Fig. 2.5.  

 

Fig. 2.5 – Block diagram of a system 

For the following text zero initial conditions are supposed.  

A transfer function (2.21a) can be written by means of linear dynamic 

system poles si (i = 1, 2,…, n) and zeros zj (j = 1, 2,…, m) 
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 (2.21b) 

A static characteristic of a linear dynamic system can be easily obtained 

from its transfer function ( 00 a ) 

 usGy
s

)(lim
0

  (2.22) 

For a given course of the input variable u(t) a corresponding course of a 

system response, i.e. the output variable y(t) can be determined in accordance 

with the scheme  
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 (2.23) 

For a linear dynamic system the responses to the unit (Dirac) impulse 

(Fig. 2.6) 
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  1)(L t  (2.24b) 

and the unit (Heaviside) step (Fig. 2.7) 
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are very important. 
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Fig. 2.6 – Unit impulse: a) undelayed, b) delayed 

 

Fig. 2.7 – Unit step: a) undelayed, b) delayed 

A linear dynamic system response to the unit impulse can be obtained on 

the basis of (2.23) and (2.24b) 

    )()(L)(L)(
-1-1

tgsGsYty   (2.26) 

The time function g(t) is the original of a transfer function G(s). It is called 

the (unit) impulse response (Fig. 2.8). 
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Fig. 2.8 – Unit impulse response of a linear dynamic system  

A static characteristic (if it exists) is given by the relation  
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d)(lim   (2.27) 

For )0(g  a linear dynamic system is strongly physically realizable and 

for g(0) containing the Dirac impulse )(t  it is only weakly physically 

realizable.  

A linear dynamic system response to the unit Heaviside step can be 

obtained on the basis of (2.23) and (2.25b) 
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A time function h(t) is called the (unit) step response (Fig. 2.9). 

A static characteristic (if it exists) is given by the relation  

uthy
t

)](lim[


  (2.29) 

For h(0) = 0 a linear dynamic system is strongly physically realizable and 

for  )0(0 h  it is only weakly physically realizable. 
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Fig. 2.9 – Unit step response of a linear dynamic system 

The use of a generalized derivative is advantageous. It is defined by the 

relations  
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where ti is the discontinuity points of the first kind with the steps Δi, )(txor  – the 

ordinary derivative, which is determined out of the discontinuity points.  

On use of the generalized derivative (2.30) it is possible to write  
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A mathematical model of a linear dynamic system in a state space has the 

form (Fig. 2.10) 

0)0(),()()( xxbAxx  tutt  – the state equation (2.34a) 

)()()( tdutty
T

 xc  – the output equation (2.34b) 

where A is the square system matrix (n x n), b – the column input vector (n x 1), 

c
T
 – the row output vector (1 x n), d – the transfer constant, x(t) – the vector of 
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the state variables. 

 

Fig. 2.10 – Block diagram of a SISO state space model 

For d = 0 a mathematical model (2.34) satisfies the strong physical 

condition and for d ≠ 0 only the weak physical realizability condition.  

If a mathematical model (2.34) fulfills the controllability condition  
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and the observability condition 
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then on the assumption that the initial conditions are zeros, on the basis of the 

Laplace transform from (2.34) the transfer function can be determined 
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where rank is a matrix rank, det – a determinant of the square matrix.  

The relation (2.37) for practical use is not suitable, because it demands an 

inversion of the functional matrix. Considerably preferable is the following 

relation  
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A characteristic polynomial of a linear dynamic system with a 

mathematical model (2.37) is given in accordance with (2.38)  
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where si are the eigenvalues of the matrix A. 

It is obvious that the poles si of a linear dynamic system are given by the 

eigenvalues of a square system matrix A. 
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A static characteristic (if it exists) can be determined from a transfer 

function (2.37) or (2.38) on the basis of (2.22). 

On the assumption of zero initial conditions and fulfillment of the 

controllability (2.35) and observability (2.36) conditions a transfer function 

(2.37) or (2.38) is determined uniquely. A transformation of the transfer 

function in a state space model is more complicated and non-unique. A state 

space model of a linear dynamic system can have many different forms. It 

depends on the choice of the state variables x(t) = [x1(t), x2(t),…, xn(t)]
T
. These 

variables are “internal” variables, and therefore a state space model is often 

called the internal model in contrast to the previous mathematical models, 

which are called the external models.  
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 Fig. 2.11 – Frequency responses: a) polar plot, b) magnitude frequency 

response, c) phase frequency response 

A description of the linear dynamic system in the frequency domain is 

very important. This description is based on the frequency transfer function, 

which can be obtained from a transfer function G(s) by replacement of the 

complex variable s with “complex frequency” jω, i.e. 
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 (2.40) 

)(j)(jmod)(  GGA   (2.41a) 
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)(jarg)(  G  (2.41b) 

where ω is the angular frequency or pulsation, 1j   – the imaginary unit, 

A(ω) – the modulus or magnitude of the frequency transfer function, φ(ω) – 

the phase or phase-angle of the frequency transfer function. 

The dimension of an angular frequency ω is the same as the dimension of a 

complex variable s, i.e. [s
-1

] or generally [time
-1

], but for the reason to make a 

distinction of the “ordinary” frequency with unit [s
-1

] and the name Hz from an 

angular frequency, the unit [rad.s
-1

] is very often used. 

 

0 

φ ω (  ) 

[rad] 

L(  ) 

[dB] 

ω 

ω [s  ] -1 1 

0 

ω [s  ] -1 1 

20 

40 

-20 

0,01 0,1 10 100 1000 

0,01 0,1 10 100 1000 

π 

2 

π 

2 

π 

d) 

e) 

  

Fig. 2.11 – Frequency responses: d) Bode magnitude plot, e) Bode phase plot 

Mapping of a frequency transfer function to the angular frequency in a 

complex plane from ω = 0 to ω = ∞ is called a polar plot or frequency 

response (Fig. 2.11a). A selected mapping of the modulus (magnitude) A(ω) 

and the phase φ(ω) from ω = 0 to ω = ∞ is called the magnitude frequency 

response (Fig. 2.11b) and the phase frequency response (Fig. 2.11c). For  

)(log20)(  AL   (2.41c) 
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Bode plots are obtained, i.e. Bode magnitude plot (Fig. 2.11d) and Bode phase 

plot (Fig. 2.11e). L(ω) is the logarithmic modulus or logarithmic magnitude 

(gain) [dB] of a frequency transfer function (2.40). For Bode plots the 

approximation is used on the basis of the line sections and asymptotical lines, 

i.e. (Fig. 3.5).  

The frequency transfer function is very important for practice, because for 

every angular frequency ω it expresses the magnitude (amplitude) A(ω) and the 

phase φ(ω) of the steady-state harmonic response to the harmonic input with a 

unit amplitude and a zero phase. It means that the frequency response can be 

obtained experimentally, and therefore it can be used for the experimental 

identification (Fig. 2.12). 

 

Fig. 2.12 – Interpretation of a frequency response of a linear dynamic system 

The physical realizability conditions are given by relations (2.4) – (2.6). In 

case of a frequency transfer function (2.40) they have a very visual physical 

interpretation. Since a frequency transfer function G(jω) describes the 

transmission of a harmonic signal through a linear dynamic system for different 

angular frequencies ω, it is obvious that the real linear dynamic system cannot 

transmit a signal with infinity angular frequency, and this is why it must hold for 

mathematical models of the physically realizable linear dynamic systems  
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It is a strong realizability condition. For the steady-state 0 t  

holds, and therefore the static characteristic is given 

0,)](jlim[ 0
0




auGy 


 (2.42) 

2.2 Block Diagram Algebra 

A great advantage of the description of the linear dynamic systems by the 

transfer functions is the possibility to use the block diagrams. Every linear 

dynamic system is presented by a block with its inscribed transfer function (Fig. 

2.13a), the addition or subtraction of the variables (signals) are presented by the 

summing nodes (Fig. 2.13b) and the variable (signal) branching is presented by 

the information node (Fig. 2.13c).  

U s( )
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Y s( )

a) b)
U s1( )

U s2( )

U s3( )

Y s( ) Y s( )

c) Y s( )

Y s( )

Y s( )

 

Fig. 2.13 – Representation: a) a linear dynamic system by a block, b) variable 

addition or subtraction by a summing node, c) variable branching by an 

information node 

For a block in Fig. 2.13a it holds 

)()()( sUsGsY   

and for the summing node in Fig. 2.13b 

)()()()( 321 sUsUsUsY  . 

Only one output from the summing node can go out.  

The filled segment of the summing node expresses the minus sign. Besides 

the filled segment the sign “-“ is often used too.  

The function of an information node is obvious.  

On the basis of the blocks and on the summing and information nodes very 

complicated block diagrams can be created, which can always be reduced into 

three basic block interconnections: serial (cascade), parallel and feedback.  
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Serial Interconnection 

 

Fig. 2.14 – Serial interconnection of blocks 

For the serial (cascade) interconnection of the blocks in Fig. 2.14 it holds  
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For the serial interconnection of the blocks the resultant transfer function is 

given by the multiplication of the transfer functions of the separate blocks (it 

does not depend on the succession of the transfer functions).  

Parallel Interconnection 
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Fig. 2.15 – Parallel interconnection of blocks 

For the parallel interconnection of the blocks in Fig. 2.15 it holds  
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(2.44) 

For the parallel interconnection of the blocks the resultant transfer function 

is given by the summation of the transfer functions of the separate blocks (the 

signs of the separate transfer functions must be taken into account, the signs at 

the summing node).  

It is obvious that the number of blocks for the serial (cascade) and parallel 

interconnections can be arbitrary.  
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Feedback Interconnection 

 

Fig. 2.16 – Feedback interconnection of blocks 

The feedback interconnection of the blocks in Fig. 2.16 is very important, 

because it is the ground for all theory of automatic control. For the feedback 

interconnection of the blocks in Fig. 2.16 it holds  
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  (2.45) 

For the feedback interconnection of the blocks the resultant transfer 

function is given by the transfer function in the forward path (branch) divided 

by the negative (in case of sign “+”) or the positive (in case of sign “-“) product 

of the transfer function in the forward path and the transfer function in the 

feedback path increased by one. The transfer function of the branch without the 

block (a transfer function) is a unit.  

If we know these three basic interconnections of the blocks we can reduce 

any complicated block diagram. We can use the Tab. 2.1. For the reason of 

simplicity the independent variable s is not often explicitly written in the block 

diagrams.  

If the block diagram contains more input and output variables, for every 

output variable the input variables are successively considered. The input 

variables, which are not considered, are supposed to be zero (they aren’t drawn). 

The resultant transfer functions are given on the basis of the linearity principle 

by the summation of the influence of the separate input variables. For the reason 

of unity the resultant transfer function uses subscripts. The first subscript 

indicates the input variable and the second subscript the output variable.  

 

 

 

 

Forward path 

)(sG  
)(sU  )(sY  

Feedback path 

)(1 sG  
)(1 sX  )(sY  

)(2 sG  

)(sU  

  

)(2 sX  

  



29 

 

 

Tab. 2.1 – Basic Block Diagram Transformations 

Moving an information node ahead of a block  

G
Y

Y

U

 G

Y

Y

U
G

 

Moving an information node behind a block 

YU
G

U
 

YU

U

G

1

G
 

Moving a summing node behind a block  

Y
G

U2

U1

 

Y

U2

U1
G

1

G
 

Moving a summing node ahead of a block 

Y
G

U2

U1

 

Y
G

U2

U1

G
 

Moving a block from a parallel interconnection 

U Y

G2

G1

 

U Y
G2

G1

1

G2

 

Moving a block from a feedback interconnection 

U Y

G2

G1

 

U Y
G2

G1

1

G2

 

 

 

2.3 Linearization 

In the previous subchapters we considered that all real systems (elements, 

plants, processes etc.) are linear. In reality all real systems are non-linear, i.e. 
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their static and dynamic behaviors can be non-linear. If the non-linear behavior 

of a given dynamic system is not substantial, then its behavior can be described 

for small variable changes in the surroundings of the operating point by a 

linear mathematical model. The linear mathematical model for a given or 

selected operating point can be obtained from a non-linear mathematical model 

by the linearization.  

There exist many different linearization methods. The simplest method 

only linearizes the non-linear static characteristics by analytical or graphical 

ways. The more complex methods use optimization of some criteria. The least 

squares method and its different modifications are often used.  

If a static mathematical model of a system has only one output variable y 

and m input variables u1, u2,…, um, i.e. 

),,,( 21 muuufy   (2.46) 

then it is suitable to use in the operating point  

),,,( 020100 muuufy   (2.47) 

an approximation on the basis of the tangent plane  

yyy  0
ˆ  (2.48) 

where 

mm ukukuky  2211  (2.49) 

is an increment of the output variable, i.e. ∆y = y – y0; and ∆u1 = u1 – u10, ∆u2 = 

u2 – u20,…, ∆um = um – um0 are the increments of the corresponding input 

variables, and  
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are the partial derivatives determined in the operating point (2.47), and ŷ  is an 

output variable in the absolute form, which was obtained after linearization. 

From a geometrical interpretation for one input (Fig. 2.17) it follows that the 

coefficient k1 is the angular coefficient of a tangent line. 
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y 

u 1 

y = f(u1) 

 y = k1u1 

u 10 

 u1 = u1 – u10 
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y 
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 y  = y – y 
 0 

α =  1 arctg(k1) 

Operating point = new origin 

of incremental coordinates 

 

Fig. 2.17 – Geometrical interpretation of linearization by a tangent line for one 

input  

The linearization on the basis of the tangent plane can be only used in a 

case that the partial derivatives (2.50) exist and they are continuous. After 

linearization the new origin in incremental coordinates (variables) must be 

regarded in the operating point (2.47), see Fig. 2.17.  

It is obvious that the linearization on the basis of the tangent plane can 

keep its quality only for the small surrounding of the operating point.  

In case of the differential equations, e.g. for the derivative of the i order 

with respect to time it holds  
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because y0 = const. 

If the linearized mathematical model is complex, then it is useful to divide 

it into simpler relations (models), and to linearize these simpler relations and 

then to determine the resultant linear relation by the substitution. The algebra of 

a block diagram can be used to great advantage. 
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3 FEEDBACK CONTROL SYSTEMS 

 

This chapter is devoted to a description and an analysis of a control system. 

Conventional linear analog controllers and simple identification methods for 

basic plants are presented. The verification of the stability of the control systems 

is described.  

3.1 Controllers 

A control system in Fig. 3.1 is considered, where GC(s) is the controller 

transfer function, GP(s) – the plant transfer function, GS(s) – the sensor transfer 

function, GV(s) – the disturbance allocating transfer function, W(s) – the 

transform of the desired (reference) variable w(t), E(s) – the transform of the 

control error e(t), U(s) – the transform of the control (manipulated, actuating) 

variable u(t), Y(s) – the transform of the controlled variable y(t). 

 

Fig. 3.1 – Block diagram of a common control system  

For the reason of simplicity in lieu of the term “transform of variable” we 

will only use “variable”.  

A sensor (measuring device) with a transfer function GS(s) must measure 

precisely and fast, therefore we may suppose that in practical cases its transfer 

function is unit, i.e. 

1)( sGS  (3.1) 

The controlled variable Y(s) can be obtained from the sensor, that’s why a 

sensor is very often assigned to the plant.  

The transfer function GV(s) enables allocating the disturbance V(s) in any 

place in a control system. Two most important cases are in Fig. 3.2. 

If disturbance variables cannot be measured or they are uncertain, then they 

are aggregated in a one disturbance variable V(s) and a disturbance is then 

allocated in the least advantageous place of a control system. In this case, it is 

the plant’s input of an integrating plant (Fig. 3.2a) and the plant’s output in the 

case of a proportional plant (Fig. 3.2b).  
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a) b) 

 

Fig. 3.2 – Control system with disturbance: a) in the input of a plant, b) in the 

output of a plant  

As noted previously, with the assumption that the condition (3.1) holds (the 

closed-loop control system with a unit feedback), the control objective for the 

control system in Fig. 3.1 can be expressed in two equivalent forms. 

The control objective in the form: 

)()(ˆ)()( sWsYtwty   (3.2) 

In accordance with Fig. 3.1 and (3.1) for the controlled variable holds 

)()()()()( sVsGsWsGsY vywy   (3.3) 

where 

)()(1

)()(
)(

sGsG

sGsG
sG

PC

PC
wy


  (3.4) 

is the desired variable to the controlled variable transfer function or the closed-

loop transfer function (the control system transfer function) and  

)()](1[
)()(1

)(
)( sGsG

sGsG

sG
sG

Vwy

PC

V

vy



  (3.5) 

is the disturbance variable to the controlled variable transfer function or the 

disturbance transfer function. 

It is obvious that for fulfillment of the control objective (3.2) for any 

desired variable W(s) and any disturbance variable V(s) the conditions 

1)( sGwy       servo (tracking) problem (3.6) 

and 

0)( sGvy       regulatory problem (3.7) 

must hold. 

The first condition for the closed-loop transfer function (3.6) expresses the 

controller function, which consists in the following desired variable W(s) by the 

controlled variable Y(s) – it is the servo or tracking problem. The second 

)(sGC  )(sGP  
)(sE  

)(sY  

)(sV  

)(sW  
1)( sGV  
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condition for the disturbance transfer function (3.7) expresses the controller 

function, which consists in the disturbance V(s) rejection (attenuation) – it is the 

regulatory problem.  

The control objective in the form: 

0)(ˆ0)(  sEte  (3.8) 

In accordance with Fig. 3.1 and (3.1) for the control error holds 

)()()()()( sVsGsWsGsE vewe   (3.9) 

where 

)(1
)()(1

1
)( sG

sGsG
sG

wy

PC

we



  (3.10) 

is the desired variable to the control error transfer function and  

)()](1[
)()(1

)(
)( sGsG

sGsG

sG
sG

Vwy

PC

V

ve



  (3.11) 

is the disturbance variable to the control error transfer function. 

It is obvious that for fulfillment of the control objective (3.8) for any 

desired variable W(s) and any disturbance variable V(s) the conditions 

0)( sGwe       servo (tracking) problem (3.12) 

and 

0)( sGve      regulatory problem (3.13) 

must hold. 

Similarly like in previous case, the first condition for the desired variable 

to the control error transfer function (3.12) expresses the servo problem and the 

second condition for the disturbance variable to the control error transfer 

function (3.13) expresses the regulatory problem.  

It is obvious that both formulations (3.2) and (3.8) of the control objective 

are equivalent and therefore further we will use the control objective in the form 

(3.2).  

The controller will operate correctly if the conditions (3.6) and (3.7) [or 

(3.12) and (3.13)] will hold at the same time. If the disturbance variable V(s) is 

effected in the plant output (Fig. 3.2b) then both conditions are equivalent (it is 

the most frequent case), i.e. if the condition (3.6) holds then automatically the 

condition (3.7) holds. Therefore, in automatic control theory attention is devoted 

to the closed-loop transfer function (3.4). The transfer functions (3.4), (3.5), 

(3.10) and (3.11) are called the basic transfer functions of the control system. 



35 

In accordance with (3.4) for the frequency closed-loop transfer function 

there can be written  

1
)j()j(

1

1

)j()j(1

)j()j(
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



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wy

GG
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and it is obvious that relations 
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


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 (3.15) 

or  

1)(1)j()j()j(  sGGGG wywyPC   (3.16) 

hold. 

From (3.15) it follows that if the satisfactory high controller modulus will 

be ensured  

)j()j(mod)(  CCC GGA  , (3.17) 

then the condition (3.6) will hold with adequate accuracy and for non-singular 

GV(s) the condition (3.7) as well.  

If the plant behavior expressed by the transfer function GP(s) is known then 

it is easier to ensure the high modulus of the frequency open-loop transfer 

function  

)j()j()j()j(mod)(  PCooo GGGGA   (3.18) 

see (3.16). 

The high moduli AC(ω) or Ao(ω) must be ensured for the band of the 

operating frequencies and at the same time for the stability and desired 

performance of the control system. This is practical by a suitable controller 

choice and its successive controller tuning.  

The industrial controllers are made in different versions and modifications, 

and therefore only basic structures and modifications of the commonly used 

controllers will be presented.  

Analog (continuous) conventional controllers are implemented as a 

combination of three components (terms): proportional – P, integral – I and 

derivative – D. The controller with all three components is called the 

proportional plus integral plus derivative controller or the PID controller. 

Its behavior can be described by the relation  
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 (3.19) 

where KP, KI and KD are the proportional, integral and derivative component 

weights, KP – the controller gain (the proportional component weight), TI – the 

integral time, TD – the derivative time.  

In industrial controllers the proportional band  

 %
100

PK
pp   (3.20) 

is often used. 

The dimension of the proportional component weight KP, i.e. the controller 

gain is given by the dimension of the control variable u(t) divided by the 

dimension of the control error e(t). The time constants TI and TD have the 

dimension of time [s]. The dimension of the integral component weight KI is 

given by the dimension of KP divided by time and the dimension of the 

derivative component weight KD is given by the product of the dimension of KP 

and time.  

The parameters KP, KI and KD or KP, TI and TD are adjustable controller 

parameters. The task of controller tuning is to ensure the desired control 

performance by suitable tuning (setting) of the adjustable controller parameters 

for a given plant. Among the adjustable controller parameters the conversion 

relations hold  

DPD

I

P
I TKK

T

K
K  ,  (3.21) 

or 

P

D
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I

P
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K

K
T

K

K
T  ,  (3.22) 

After using the Laplace transform on relation (3.19) the controller transfer 

function  
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is obtained. 

In Fig. 3.3 there are drawn the courses of the moduli of the controller 

components P, I and D. From Fig. 3.3 it follows that the integral component (I) 

ensures the high value of the frequency transfer function modulus of the PID 
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controller for small angular frequencies and especially for the steady state  

 (ω = 0), the derivative component (D) for high angular frequencies and the 

proportional component for all angular frequencies (mainly for medium 

frequencies). In fact by a suitable choice of the particular components P, I and 

D, i.e. by the suitable setting of the adjustable controller parameter KP, KI and 

KD or KP, TI and TD it is possible to achieve a high modulus of the frequency 

controller transfer function (3.17) or a high modulus of the frequency open-loop 

transfer function (3.18), in order to fulfill the conditions (3.15) or (3.16). 
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Fig. 3.3 – Dependence of partial controller components P, I and D of PID on 

angular frequency 

Tab. 3.1 – Conventional analog controller transfer functions 

 Type Transfer function )(sGC  
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In industrial practice simpler controllers are often used. They are: the P 

(proportional) controller, the I (integral) controller, the PI (proportional plus 

integral) controller and PD (proportional plus derivative) controller. Their 

transfer functions are in Tab. 3.1 (rows 1 – 5). The single D component is 

unusable because it only reacts to the derivative )(te  and therefore in a steady 

state it causes a disconnection of the control system.  

The block diagram of the PID controller with the transfer function (3.23) is 

in Fig. 3.4a. From the Fig. 3.4a it follows that it has a parallel structure. The 

adjustable parameters of this controller can be tuned independently. Therefore 

this PID controller is without interaction (non-interacting).  

a) 

 
b) 

 

Fig. 3.4 – Block diagram of a PID controller with a structure: a) parallel 

(without interaction), b) serial (with interaction) 

Sometimes the PID controller form with weights (3.23) is only considered 

as a controller with a parallel structure and the PID controller form with the time 

constants is considered as a standard form according to ISA (The International 

Society of Automation formerly Instrument Society of America).  

The PID controller can be implemented by the serial (cascade) structure 

(Fig. 3.4b), which is described by relation  
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 (3.24) 
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This relation may be transformed into a parallel structure (3.23) 
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From (3.25) it follows that the change of the integral time IT   or derivative 

DT   time comes to change all values of the adjustable controller parameters KP, 

TI and TD, which corresponds to the parallel structure, i.e. the interaction among 

the adjustable controller parameters happens. Therefore the PID controller with 

the serial structure is called the PID controller with interaction (interacting) 

and it is marked like the PIDi controller (Tab. 3.1, row 6). Among the adjustable 

controller parameters for the parallel and serial structure the following relations 

hold 
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The coefficient i is called the interaction factor. Most of controller tuning 

methods suppose the PID controller (without interaction) and therefore the 

adjustable controller parameters 
P
K  , IT   and DT   of the PIDi controller (with 

interaction) must be recounted for parameters KP, TI and TD on the basis of 

(3.26). 

For the PIDi controller in accordance with (3.27) the restriction  

4

1


I

D

T

T
 (3.28) 

there arises. 

The approximate Bode plots of the PIDi controller [with interaction (3.24)] 

are shown in Fig. 3.5.  

If the condition (3.28) holds then the approximate Bode plots of the PID 

controller [without interaction (3.23)] have the same courses as in Fig. 3.5, but 

the relations (3.27) must be considered.  

From Fig. 3.5 it follows again that the integral component ensures the high 

value of the controller modulus for low angular frequencies firstly for steady 

states, the derivative component for high angular frequencies and the 

proportional component for all angular frequencies in the operating band. The 

serial structure of the PIDi controller has some advantages. It can be simply 
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implemented by the serial interconnection of the PI and PD controllers [Fig. 

3.4b and (3.24)] and therefore it is cheaply manufactured. For 0 DD TT  both 

structures are equivalent to the PI controller.  

 

Fig. 3.5 – Bode plots of PIDi controller  

From a theoretical point of view the derivative component has a positive 

stabilizing effect on the control process, but from a practical point of view it has 

very unpleasant behavior, which consists in the amplification of high frequency 

noise and fast changes (Fig. 3.3 and 3.5). E.g. if the derivative component of the 

PD or PID controllers  
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processes the control error e(t), which contains harmonic noise with the 

amplitude an and the angular frequency ωn 
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then the derivative component (3.29) output is 
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taK nnnD  cos  is the parasitic part of the derivative component output.  
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It is obvious that for high angular frequencies ωn the parasitic part will 

dominate over the useful part and then the output of the derivative component 

can cause an incorrect controller function, thereby even over all the control 

system. Hence the ideal derivative operation is practically unusable. For 

attenuation of the parasitic part a filter of the derivative component is used. Its 

transfer function is given 

NsT
s
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T
DD

1
,

1

1

1

1
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
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




 (3.31) 

where N = 5 ÷ 20 or α = 0.05 ÷ 0.2. 

The task of the filter is to attenuate the parasitic noise in the controlled 

variable y(t). For α ≤ 0.1 the filter doesn’t have a principle effect on the resultant 

controller behavior, therefore during controller tuning it isn’t considered. In 

industrial controllers the filter (3.31) is often preset at a value α = 0.1 (N = 10).  

The transfer function of the PID controller with the filter has the form  
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A very unpleasant effect, which appears in controllers with the integral 

component, is the windup. The windup is caused by limiting the control 

variable, when the integration goes on and big overshoots arise. For windup 

removal a special mechanism must be used – the antiwindup. 

3.2 Plants 

The mathematical models of the plants may have different forms. For the 

linear plants the transfer functions with time constants are frequently used. The 

time constants are marked so that inequalities  

,2,1,0,1   iTT ii  (3.33) 

hold, i.e. the time constant with a lower subscript has a higher or the same value 

than the time constant with a higher subscript.  

The obtaining of the mathematical model of the real plant (object) is called 

the identification. The identification can be analytical or experimental. The 

practical identification methods lie between these two marginal cases. It is 

always useful to find the approximate relations describing given plant in the 

theoretical way and then experimentally to determine model parameters more 

precisely. For better prepared analytical relations experimental measurements 

are shorter and cheaper.  
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Every concrete plant demands a different identification method. Finding 

the most suitable identification approach supposes some intuition and 

experience.  

Furthermore, some simpler experimental identification methods will be 

shown, which use step responses. It is supposed that the courses of the step 

responses are suitably prepared (filtered, smoothed etc.) and that all variables 

are in incremental forms, i.e. the courses begin in the origin of coordinates.  

Proportional non-oscillating plants 

If the plant is non-oscillating and has the step response hP(t) as in Fig 3.6a 

then the simplest identification method consists in the determination of the time 

delay Tu = Td = Td1 and the time constant Tn = T1. The first order plus time delay 

(FOPTD) plant transfer function has the form  
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Fig. 3.6 – FOPTD plant identification on the basis of:  

a) time delay Tu = Td1 and time constant Tn = T1, b) times t0.33 and t0.7 

The plant gain k1 for proportional plants for the unit step of the input 

variable, i.e. Δu(t) = η(t) is given by the steady state in the step response  

)(1  Phk  (3.35) 

because hP(0) = 0. 

For general value of the step Δu(t) = Δu the plant gain k1 is given  

u

h
k P

Δ

)(
1


  (3.36) 

The dimension of the plant gain k1 is given by the ratio of the dimension of 

the output variable yP(t) = hP(t) to the dimension of the input variable Δu(t). 
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A very good mathematical model can be obtained by the Strejc method. It 

is suitable for proportional non-oscillating plants. The approximate value of the 

time delay dT   must be determined at first and then on the basis of the times Tu 

and Tn the ratio  

n

du

T

TT 
 

is computed and in Tab. 3.2 the nearest lower value of the ratio 

n

diu

n

ddu

T

TT

T

TTT 


 Δ
 (3.37) 

must be found and then the plant order i is determined. The plant transfer 

function is given by the formula 
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where time delay is 

dddi TTT  Δ  (3.39) 

and Ti is determined from row 3 or 4 ( dT   is the correction of the estimation 

dT ). 

Tab. 3.2 – Strejc method of experimental identification 

i  1 2 3 4 5 6 

n

diu

T

TT 
 0 0.104 0.218 0.319 0.410 0.493 

i

diu

T

TT 
 0 0.282 0.805 1.425 2.100 2.811 

i

n

T

T

 
1 2.718 3.695 4.463 5.119 5.699 

 

If the times t0.33 and t0.7 (Fig. 3.6b) are used for the experimental 

identification, then for the FOPTD plant (3.34) the formulas can be used  
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For the second order plus time delay (SOPTD) plant with the transfer 

function  
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the formulas 
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can be used. 

The relation  

)(
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P

dii
h

S
TiT  (3.43) 

can be used for the approximate verification of the (3.34), (3.38) and (3.41), 

where S is the complementary area over the step response hP(t), see Fig. 3.6. 

The relations (3.40) were obtained analytically and the relations (3.42) 

numerically from the correspondences of the original step response and the 

approximate step response in the values hP(0) = 0, hP(t0.33) = 0.33hP(∞), hP(t0.7) = 

0.7hP(∞) and hP(∞). 

A very good approximation of the SOPTD plant with different time 

constants T1 and T2 is given by the following formulas  
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 (3.45) 

In order to use the transfer function in the form (3.44), the inequality  

D2 > 2D1, must hold otherwise the transfer function (3.41) must be used. 

For fast conversion of the transfer function (3.38) on the simpler transfer 

functions (3.34) and (3.41) in accordance with the scheme  
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on the basis of Tab. 3.3 can be used.  

 

Tab. 3.3 – Table for fast transfer function conversion in accordance  

with scheme (3.46) 
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0.638 1 1.263 1.480 1.668 1.838 
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* 

–0.352 
0 0.535 1.153 1.821 2.523 

* Applicable for Td1 > 0.352T1. 

 

Tab. 3.3 was obtained numerically on condition that the values hP(0), 

hP(t0.33), hP(t0.7) a hP(∞) of the original and the conversed step responses are the 

same.  

Non-oscillating integrating plants  

The identification of the integral plus first order plus time delay (IFOPTD) 

plants with the transfer function  

sT

P
d

sTs

k
sG 1e

)1(
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1

1 


  (3.47) 

can be made on the basis of their step responses hP(t) in accordance with Fig. 

3.7a. The dimension of the plant gain k1 is given by the ratio of the dimension of 

the output variable yP(t) = hP(t) and the dimensions of the input variable Δu(t) 
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and time.  

All previous methods for identification of the proportional plants can be 

used for identification of the simple integrating plants if we use the impulse 

response (the derivative of the step response)  

)(
d

)(d
tg

t

th
P

P   

in lieu of the step response hP(t). 
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Fig. 3.7 – Identification of integrating plants on the basis of:  

a) step response hP(t), b) impulse response gP(t) 

It is shown in Fig. 3.7b for the IFOPTD plant with the transfer function 

(3.47).  

If the step of the input variable isn’t a unit, i.e. Δu(t) ≠ η(t) but it is Δu(t) = 

Δu, then it is necessary to consider the values, which are in parentheses in Fig. 

3.7.  

Conversion of plant transfer functions  

Some of the methods for the analysis and synthesis of control systems 

demand that the plant transfer functions have specific forms. These forms can be 

obtained by the simple transfer function conversion.  

The conversion of the transfer function in the form (3.38) on the 1st or 2nd 

order form can be made on the basis of scheme (3.46) and Tab. 3.3.  

The simple conversions of the transfer functions without derivations are 

given below. These conversions come from the equality of supplementary areas 

over the step responses.  
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Integrating plants 
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The use of a combination of the summary time constant T∑ and the 

substitute time delay Td is advantageous.  

If in the numerator of the plant transfer function stands up the binomials 

si1  (3.55) 

then each binomial can be substituted by the term  

sie  (3.56) 

on condition that the resultant time delay will be non-negative. 

The “half rule” is very simple and simultaneously effective. 

On the assumption that the plant transfer function has a form with unstable 

zeros  
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then on the basis of the “half rule” we can obtain  
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for the transfer function (3.34) or  
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for the transfer function (3.44). 

The resultant time delay Td1 or Td2 must be always non-negative. 
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3.3 Control System Stability 

Stability of the linear control system is defined as its ability to fix all 

variables on finite values if input variables are fixed. The input variables are the 

desired variable w(t) and all disturbance variables, which are often aggregated 

into one disturbance variable v(t). 

It is obvious that the following stability definition is equivalent. The linear 

control system is stable if for any bounded input the output is always 

bounded. It is so-called BIBO (bounded-input bounded-output) stability. 

From both definitions it follows that stability is the characteristic behavior 

of the given control system, which doesn’t depend on the inputs and outputs (it 

doesn’t hold for non-linear systems).  

Therefore the control system is fully described by the equation (3.3) 

)()()()()( sVsGsWsGsY vywy   

or (3.9) 

)()()()()( sVsGsWsGsE vewe   

it is obvious that stability is given by the term, which figures in all the basic 

transfer functions, i.e. Gwy(s) and Gvy(s) or Gwe(s) and Gve(s). From relations 

(3.4) and (3.5) or (3.10) and (3.11) it follows that this term is their denominator 
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  (3.60) 

where Go(s) is the open-loop transfer function of the control system (it is 

generally given by the product of all transfer functions in the loop), No(s) – the 

characteristic polynomial of the open-loop of the control system (the 

denominator of the open-loop transfer function), Mo(s) – the polynomial of the 

numerator of the open-loop transfer function. 

The polynomial 

)()()( sMsNsN oo   (3.61) 

is the characteristic polynomial of the control system and after its equating to 

zero the characteristic equation of the control system  

0)( sN   

is obtained. 

The characteristic polynomial (3.61) rises after its arrangement in the 

denominators of all basic transfer functions of the control system, i.e. (3.4), 

(3.5), (3.10) and (3.11) and therefore it is simultaneously the characteristic 

polynomial of the relevant linear differential equation, which describes the 

given control system.  
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A necessary and sufficient condition for (asymptotic) stability of the linear 

differential equation and the corresponding linear dynamic system is that the 

roots s1, s2,..., sn of the characteristic polynomial (or the characteristic equation)  

)())(()( 2101 nn

n

n ssssssaasasasN    (3.62) 

have negative real parts, i.e. (see Fig. 3.8) 

nis
i

,,2,1for,0Re   (3.63) 

It is obvious that the conditions of the negativeness of the real parts of the 

roots (i.e. poles) (3.63) of the characteristic polynomial of the control system 

(3.61) [(3.62)] are the necessary and sufficient conditions for (asymptotic) 

stability of the given linear control system.  

Because the concept of the stability of the non-linear systems has a rather 

different meaning, it is necessary in some cases when the necessary and 

sufficient conditions hold to use a more precise concept of “asymptotic” 

stability.  

The complex roots, i.e. poles of the control system rise always in the 

conjugate couple (i.e. in the symmetry of the real axis in the s-complex plane). It 

is very important that the poles s1, s2,..., sn of the control system are at the same 

time the poles of all of its basic transfer functions. It doesn’t hold for the zeros 

of the basic transfer functions. The poles of the control system determine its 

dynamic behavior.  

The necessary and sufficient condition for stability (3.63) of the control 

system can be obtained in another way. 

Consider any basic transfer function of the control system, e.g.  
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and the desired variable transform  
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where M(s), Mw(s) and Nw(s) are the polynomials and N(s) is the characteristic 

polynomial of the control system. 

On condition that the characteristic polynomial of the control system N(s) 

has the simple roots s1, s2,..., sn and the polynomial Nw(s) has the simple roots 
w
p

ww
sss ,,, 21   [p is the degree of the polynomial Nw(s)], the transform of the 

controlled variable (response) 
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can be written in the form of the sum of the partial fractions  
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where YT(s) is the transform of the transient response part, YS(s) – the transform 

of the steady response part. 

The original of the controlled variable y(t) can be obtained from (3.67) on 

the basis of the Laplace transform 
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The constants Ai and Bj in the relations (3.67) and (3.68) generally depend 

on the forms of the transfer function Gwy(s) and the desired variable transform 

W(s), see (3.64) and (3.65).  

The course of the transient part of the controlled variable yT(t) depends on 

the roots of the characteristic polynomial of the control system, i.e. on its poles 

and it is given as 
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The course of the steady part of the controlled variable  
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is given by the course of the desired variable w(t). 

Here by its steady course it is necessary to understand the given time 

function, e.g. yS(t) = Bt, yS(t) = Bsinωt etc. in contrast to the steady (static) state, 

e.g. yS(t) = yS = const. 

From (3.68) it follows that for the bounded input variable – the desired 

variable w(t) ( 0Re 
w
js  for j = 1, 2,..., p) the output variable – the controlled 

variable y(t) will be bounded if and only if its the transient part yT(t) will be 

bounded, i.e. the condition (3.63) will hold. Therefore for the stable control 

system the transient part yT(t) must vanish for t → ∞ , i.e.  

0)(lim 


ty
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t
 (3.69) 

therefore for t → ∞  
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holds. 
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From the last relation it follows that control system stability is its ability to 

steady the output controlled variable y(t) → yS(t) for the steady input desired 

variable w(t) → wS(t). 

For the control system from the control objective y(t) → w(t) it follows the 

obvious demand yS(t) → wS(t). 

 

Re 0 

Im s 

Stable region Unstable region 

Stability boundary 

 

Fig. 3.8 – The influence of the position of control system poles on the transient 

part of the response 

It is obvious that similar conclusions will hold for multiple poles of the 

polynomial N(s) and Nw(s) in the relation (3.66), because adding negligible 

small numbers to the multiple poles changes their simple poles and this small 

change can’t have a substantial effect on the behavior of the given control 

system.  

The influence of the position of the control system poles on the transient 

part of the response is shown in Fig. 3.8. It is necessary to reason out that the 

oscillating responses are evoked by the conjugate complex couple of the poles. 

The transfer function of the open-loop control system with a time delay has 

the form [compare with (3.60)] 
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On the basis of the (3.71) we can easily obtain the characteristic 

quasipolynomial of the control system [compare with (3.61)] 
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The characteristic quasipolynomial (3.72) has an infinite number of roots, 

i.e. the control system with the time delay has an infinite number of poles. That 

is why the stability verification by the necessary and sufficient conditions (3.63) 

by the direct computation isn’t real.  

Control system stability is the only necessary condition for its proper 

operation. For verification of control system stability different stability criteria 

are used, which enable checking the fulfillment of inequalities (3.63) without 

labored computation of all roots of the control system characteristic polynomial 

or quasipolynomial N(s).  

Furthermore, the three stability criteria are given without derivation: 

Hurwitz, Mikhailov and Nyquist criteria.  

Hurwitz stability criterion 

The Hurwitz stability criterion is an algebraic criterion and therefore it isn’t 

suitable for the control systems with a time delay (the exponential function isn’t 

an algebraic function). It can be used only for approximate stability verification 

in the case that the time delay will be substituted by its algebraic approximation.  

The Hurwitz stability criterion can be formulated in the form: 

„The linear control system with the characteristic polynomial 

01)( asasasN
n

n    

is (asymptotic) stable [i.e. the conditions (3.63) hold] if and only if, when:  

− all coefficients a0, a1,..., an exist and are positive (it is a necessary 

stability condition formulated by Slovak technician A. Stodola)  

− the main corner minors (subdeterminants) of the Hurwitz matrix 
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are positive.“ 

Because the equality H1 = an–1, Hn = a0Hn–1 hold, it is enough to check only 

the positiveness of H2, H3, ..., Hn–1. If some of the Hurwitz minors are zero, then 

it determines the stability boundary. E.g. for a0 = 0   Hn = 0 one pole is zero 

(it is the origin of the coordinates in the complex plane s). This case 

characterizes the non-oscillating stability boundary. For Hn–1 = 0 two poles are 

imaginary and conjugate (they are on the imaginary axes in symmetry by the 
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origin of the coordinates in the complex plane s). This case characterizes the 

oscillating stability boundary, see Fig. 3.8.  

If the Stodola necessary condition of the stability holds, then the simplified 

Lineard – Chipart stability criterion can be used, which consists only in 

checking of  the positiveness of all odd or all even Hurwitz minors.  

The disadvantage of the Hurwitz criterion is its high demandingness of 

computation for n ≥ 5. 

Mikhailov stability criterion  

The Mikhailov stability criterion is a frequency criterion with a wide range 

of use. Here only a simple formulation will be given, which is suitable for 

control systems without a time delay. 

The Mikhailov stability criterion uses the control system characteristic 

polynomial N(s), from it after substituting s = jω the Mikhailov function  
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is obtained, where 


4

4

2

20)(jRe)(  aaaNN P  (3.75a) 

is the real part and 
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31)(jIm)(  aaaNNQ  (3.75b) 

is the imaginary part of the Mikhailov function.  

The Mikhailov stability criterion can be formulated in the form: 

„The linear control system is (asymptotic) stable if and only if its 

Mikhailov function (plot) N(jω) for 0 ≤ ω ≤ ∞ begins on the positive real axis 

and successively passes through n quadrants in a positive direction 

(anticlockwise).“ 
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Fig. 3.9 – Mikhailov plots for control systems: 

a) stable, b) unstable 

This formulation can be written in a form for changing the argument 

(angle) of the Mikhailov function  

2
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 (3.76) 

where n is the characteristic polynomial N(s) degree.  

The courses of the Mikhailov functions (plots) for the stable control 

systems are in Fig. 3.9a and for unstable control systems in Fig. 3.9b.  

The Mikhalov function can be employed for an analytical determination of 

the ultimate (critical) angular frequency ωc and the ultimate (critical) controller 

gain KPc or the ultimate (critical) controller integral time TIc.  
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Fig. 3.10 – Mikhailov plots for control systems on the stability boundary 

For this the equations 
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0  and  0  QP NN  (3.77) 

are used.  

The ultimate parameters (ωc, KPc or TIc), more correctly their values, cause 

that the control system is on a stability boundary, i.e. in the critical state 

between stability and instability. In this case a slight change of these values 

causes stability or instability of a given control system.  

Nyquist stability criterion 

The Nyquist stability criterion is a frequency criterion, which in contrast to 

the Hurwitz and Mikhailov criteria uses the open-loop frequency transfer 

function Go(jω). It is very general and it can be extended for unstable open-loop 

control systems and even for non-linear control systems.  

The control system in Fig. 3.11 is considered. It is obvious that when 

oscillations arise with a constant amplitude and an angular frequency on the 

stability boundary [for W(s) = V(s) = 0] it is necessary that oscillations in the 

feedback path must be the same as oscillations in the forward path but with a 

negative sign, see Fig. 3.11. It can be written in the transforms  

1)(j1)( 
coo

GsG   (3.78) 

where Go(s) = GC(s)GP(s) is the open-loop transfer function (it is generally given 

by the product of all transfer functions in the loop), ωc – the ultimate angular 

frequency.  

 

Fig. 3.11 – Control system on stability boundary 

It is obvious that this conclusion can be made on condition that the open-

loop control system is stable (otherwise the stable oscillations in the control 

loop wouldn’t be possible).  

The relation (3.78) expresses the given control system condition for the 

oscillating stability boundary. It can be obtained from the same denominators of 

the basis transfer functions of the control systems [see e.g. (3.4), (3.5), (3.10) 

and (3.11)], where the term 1 + Go(s) stands out. It is obvious that the critical 

state arises when this term will be equal to zero, which corresponds with (3.78). 
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The relation (3.78) expresses the fact that if the control system is on the 

oscillating stability boundary, then the frequency response (polar plot) of the 

open-loop control system comes through the point –1+j0 on the negative real 

axis. This point is called the critical point. The frequency response of the open-

loop control system is called the Nyquist plot. 

Furthermore, from the relation (3.78) and Fig. 3.14 it follows that if the 

value e.g. Go(jωp) = –0.5 in lieu of Go(jωp) = Go(jωc) –1 was in it, the 

oscillations would decrease (i.e. the control system is stable) and vice versa for 

value e.g. Go(jωp) = –2 the oscillations would increase (the control system is 

unstable).  

The Nyquist stability criterion can be formulated in the form: 

„The linear control system is (asymptotic) stable if and only if when the 

frequency response of the stable open-loop control system, i.e. the Nyquist plot 

Go(jω) for 0  doesn’t enclose the critical point –1+j0 on the negative 

real axis.“ 

The main cases of the Nyquist plots Go(jω) are shown in Fig. 3.12. The 

integrating elements in the forward path or feedback path (i.e. in the loop) from 

the point of view of the Nyquist stability criterion aren’t considered as unstable 

(they are in fact neutral elements). The number of these integrating elements q is 

called the control system type.  

In the case the integrating elements exist the decision about if that the 

Nyquist plot encloses or doesn’t enclose the critical point –1+j0 must be made 

in accordance with the Fig. 3.13.  
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q  = 0 

Go  
(j ω ) 

ω =  0 

-1 

Stable 

On stability boundary 

Unstable 

Critical point 

 

Fig. 3.12 – Nyquist plots Go(jω) for control system with q = 0 

If the Nyquist plot Go(jω) for q = 2 has the course as in Fig. 3.13 then the 

control system is conditionally stable, because the increasing or decreasing of 

the Ao(ω) for the phase –π can cause the instability of the control system.  
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Above the geometrical form of the Nyquist stability was formulated. The 

analytical formulation of the Nyquist stability criterion is also very useful. We 

can write  

1)( 
go

A   (3.79) 

 )( po  (3.80) 

where ωg is the gain crossover angular frequency, ωp – the phase crossover 

angular frequency.  

For the oscillating stability boundary holds 

pgc    (3.81) 

Now the Nyquist stability criterion can be written in different analytical 

forms:  

1)(jRe)(j 
popo

GG  ,   1)( poA   (3.82) 

 )( go  (3.83) 
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Fig. 3.13 – Nyquist plots Go(jω) for stable control systems with q = 1 and q = 2  
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Fig. 3.14 – Gain margin mA and phase margin γ 

It is obvious that these simple analytical formulations hold for 

nonconditionally stable control systems. For conditionally stable systems these 

formulations can be easily extended.  

On the basis of the angular frequencies ωg and ωp further important indices 

can be defined (Fig. 3.14): 

the gain margin 

)(

1

po

A
A

m


  (3.84) 

and the phase margin  

)( go    (3.85) 

The gain margin mA expresses how many times the magnitude Ao(ωp) can 

be increased (how many times the open-loop gain ko can be increased) in order 

for the control system to reach the stability boundary. Similarly the phase 

margin γ expresses how much the phase φo(ωg) (in the absolute value) can be 

increased in order for the control system to reach the stability boundary.  

Because the controller integral component brings the negative phase in the 

open-loop of the control system (see Fig. 3.5), i.e. it decreases the phase margin 

γ, therefore the controller integral component destabilizes (i.e. it deteriorates 

the stability) the control system. On the other hand the controller derivative 

component brings the positive phase in the open-loop of the control system (see 

Fig. 3.5), i.e. it increases the phase margin γ, therefore the controller derivative 

component stabilizes (i.e. improves the stability) the control system [of 

course for suitable filtration, see e.g. (3.31 and 3.32)]. 
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Regarding the controller gain KP, it is obvious that by its increasing it 

simultaneously increases the open-loop gain ko and hence the gain margin is 

decreased, therefore the controller proportional component destabilizes the 

control system (it doesn’t hold for conditionally stable control systems).  

Time delay is very dangerous for the control system stability. The 

frequency transfer function of the time delay has the form  

)(jj
e)(e)(j

  AG dT 


 (3.86) 

1)( A  (3.87) 

 dT)(  (3.88) 

From the relations (3.86) – (3.88) it follows that the time delay doesn’t 

change the modulus (magnitude) [see (3.87)] but linearly increases the negative 

phase [see (3.88)], i.e. it decreases the phase margin γ. Therefore the time delay 

always essentially destabilizes the control system.  
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4 CONTROL SYSTEM SYNTHESIS 

The chapter is devoted to process control performance and the linear 

control system synthesis, i.e. to controller choices and their tuning. Basic known 

and new controller tuning methods are brought up. Some of them are also for 

the digital controller.  

4.1 Process Control Performance  

The control objective expressed in two equivalent forms (3.2) and (3.8) or 

by couple relations (3.6), (3.7) and (3.12), (3.13) [see as well (3.15), (3.16)] can 

be held with a different process control performance and only on the condition 

that a given control system is stable. It is obvious that process control 

performance can be reviewed in: the time domain, the frequency domain and the 

complex variable domain. Different criteria and indices can be used for it. 

Time Domain 

The time domain is very popular among the control system technicians and 

designers because it enables the fast and intuitive evaluation of process control 

performance on the basis of the step responses y(t) caused by the step changes 

of the desired variable w(t) or the disturbance variable v(t). It is useful to 

inscribe the responses with subscripts in accordance with the input variables. 

For simultaneous actuating the desired variable w(t) and the disturbance 

variable v(t) on the basis of the linearity principle it holds 

 )()()()()()()( sYsYsVsGsWsGsY vwvywy  

)()()( tytyty vw   (4.1) 

where yw(t) is the response caused by the desired variable w(t) for v(t) = 0, yv(t) 

– the response caused by the disturbance variable v(t) for w(t) = 0.  

The typical control system oscillatory and non-oscillatory responses in 

incremental variables (i.e. in increments from the operation point) are shown in 

Figs 4.1 and 4.2. A very important conclusion comes from them. If the 

disturbance variable v(t) influences the plant output then for the same input 

steps the servo (setpoint) response and regulatory response are in principle the 

same as well (the regulatory response is turned up and moved, see Figs 4.1 and 

4.2). It is given by relation Gvy(s) = 1 – Gwy(s). The steady-state errors ev(∞) for 

the control systems in Fig. 3.2 and the steps of the disturbance variable v(t) have  

negative values, see Figs 4.2b and 4.4b and relation (3.11).  

The servo and regulatory responses for the disturbance variable caused in 

the plant output with the zero steady-state errors in Fig. 4.1 correspond to a case 

when the open-loop contains at least one integrating element, i.e. the control 
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system type q ≥ 1. The integrating element (component) can be included in the 

controller or in the plant.  

 

Fig. 4.1 – Control system step responses in the case of zero steady-state errors: 

 a) servo (setpoint) responses, b) regulatory responses for disturbance variable in 

the plant output  

 

Fig. 4.2 – Control system step responses in case non-zero steady-state errors: 

 a) servo (setpoint) responses, b) regulatory responses for disturbance variable in 

plant output  

The servo and regulatory responses for the disturbance variable caused in 

the plant output with non-zero steady-state errors in Fig. 4.2 correspond to the 

case when the open-loop doesn’t contain any integrating element, i.e. the control 

system type q = 0  

If the disturbance variable v(t) influences the plant input (in Figs 4.3 and 

4.4 the oscillating responses are only shown), then it is necessary to distinguish 
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the causes if the plant contains the integrating elements (it has an integrating 

character) or doesn’t contain the integrating elements (it has a proportional 

character). 

 

Fig. 4.3 – Control system step responses for a controller with integral 

component and proportional plant: a) servo (setpoint) response, b) regulatory 

response for a disturbance variable in plant input  

 

Fig. 4.4 – Control system step responses for a controller without an integral 

component and integrating plant: a) servo (setpoint) response, b) regulatory 

response for a disturbance variable in the plant input  

If the plant has a proportional character and the controller contains the 

integral component (e.g. I, PI, PID) then q = 1 and the steady-state errors are 

zero, see Fig. 4.3. From Fig. 4.3 it follows that the regulatory response yv(t) is 

often very well attenuated by the plant. It is caused by the filtration (inertia) 

behavior of the plant. Therefore the controller can be tuned more aggressively, 
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i.e. it is possible to increase the controller gain KP or to decrease the integral 

time TI.  

If the plant has an integrating character (only one integrating element is 

considered) then in the case of the use of the controllers without the integral 

component (e.g. P, PD) the control system is type q = 1 but still for the 

disturbance in the plant input the regulatory response will be with a non-zero 

error, see Fig. 4.4b. For controllers with the integral component the steady-state 

errors ew(∞) and ev(∞) will be zero for the input steps. In this case the control 

system type q is 2.  

The steady-state errors can be determined on the basis of the following 

relations  

)()()()()()()( sEsEsVsGsWsGsE vwvewe   (4.2) 

)(lim)(),(lim)(
00

ssEessEe v
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vw
s

w


  (4.3) 

where ew(∞) is the steady-state error caused by the desired variable w(t), ev(∞) – 

the steady-state error caused by the disturbance variable v(t).  

The mentioned relations (4.2) and (4.3) generally hold for any changes of 

the input variables w(t) and v(t), e.g. for the velocity or acceleration steps etc.  

The steady-state errors can be decreased by increasing the controller gain 

KP (in the case of the I controller by decreasing the integral time TI). 

If the plant has an integrating character and the disturbance variable v(t) 

causes in the plant input then it is necessary to reason it out in controller tuning.  

By ensuring suitable behavior of the control system from the point of view 

of the desired variable w(t), the corresponding behavior of the control system 

from the point of view of the disturbance variable v(t) (for a disturbance caused 

in the plant output it always holds) will be ensured in most cases too. Therefore 

further the servo (tracking) problem is solved first of all and that is why the 

subscripts w will not be mostly used. 
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Fig. 4.5 – Servo (setpoint) responses with marked control performance indices 

In Fig. 4.5 two typical courses of the servo (setpoint) response are shown. 

From the practical point of view the most important performance indices are: 

the settling time tr and the relative overshoot  

)(,
)(

)(
mm

m tyy
y

yy





  (4.4) 

where ym is the maximum value of the controlled variable y(tm) (the first 

maximum or peak), tm – the time of reaching the value ym (the peak time), y(∞) – 

the steady state value of the controlled variable. The settling time is determined 

by the time when the controlled variable y(t) gets in the band with a width 2Δ, 

i.e. y(∞)  Δ, where the control tolerance is given 

05.001.0),(   y         (1   5) % (4.5) 

The relative control tolerance δ mostly has a value 0.05 or 0.02. 

For the settling time tr the relative control tolerance δ must be mentioned 

otherwise it is supposed δ = 0.05 (5 %). 

The case κ = 0 corresponds to a non-oscillating (aperiodic) control process, 

which is used for processes where the overshoot can cause undesirable effects 

(e.g. thermal and chemical processes, assembly robots and manipulators etc.).  

For the non-oscillating control process, the minimum of the settling time is 

demanded very often. This control process is called the marginal non-

oscillating control process.  

For κ > 0 the control process is oscillating and faster then the non-

oscillating process. The time for reaching the value y(∞) is the rise time to. Very 

often the rise time is defined like the time required for the response to go from 

0.1y(∞) to 0.9y(∞).  
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The control process with the relative overshoot κ about 0.05 (5 %) is 

acceptable for most plants. If the minimum of the settling time tr is 

simultaneously ensured then this control process is regarded as practically 

“optimal”. It is widely accepted everywhere that the small overshoot doesn’t 

matter or is desirable, e.g. for the indicator measuring and recording devices (in 

this case the small overshoot enables a faster interpolating of the indicator 

position).  

The integral criteria are very useful for the complex evaluating of the 

control performance. The shade area in Fig. 4.6 expresses the so-called control 

area.  

It is obvious that the control area will be smaller and the control 

performance will be higher. It is suitable to work with the control error e(t) = 

w(t) – y(t) (see Figs 4.6b, c, d) on condition e(∞) = ew(∞) = 0. If e(∞) ≠ 0, then 

in all relations for the integral criteria the term e(t) – e(∞) must be substituted in 

lieu of e(t)    

Integral of error (Fig. 4.6b) 

min d)(
0

 


tteI IE  (4.6) 

The integral of error IIE (IE = Integral of Error) is the simplest integral 

criterion. It isn’t suitable for oscillating control processes, because IIE = 0 for the 

control process on the oscillating stability boundary (the areas marked with 

signs + and – are mutually subtracted). Its best advantage is that it can be easily 

computed (see appendix) 









00
00

d)(de)(lim)(lim ttettesEI
st

ss
IE  (4.7) 

Integral of absolute error (Fig. 4.6c) 

min d)(
0

 


tteI IAE  (4.8) 

The integral of absolute error IIAE (IAE = Integral of Absolute Error) 

removes the disadvantage of the previous integral criterion IIE (see Fig. 4.6c), 

and therefore it is applicable for both non-oscillating and oscillating control 

processes. It has a very unpleasant behavior and generally cannot be calculated 

analytically but only numerically or by simulation.  

It is obvious that the control area in Fig. 4.6a is (4.8) too. 
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Fig. 4.6 – Geometrical interpretation of integral criteria: a) control area,  

b) integral of error IIE, c) integral of absolute error IIAE,  

d) integral of squared error IISE 

Integral of squared error (Fig. 4.6d) 

min d)(
0

2
 



tteI ISE  (4.9) 

The integral of squared error IISE (ISE = Integral of Squared Error) 

removes the disadvantages of both previous integral criteria IIE and IIAE. It can 

be used for non-oscillating and oscillating control processes and its value can be 

calculated in an analytical way. It is very suitable in these cases when the 
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desired w(t) and the disturbance v(t) variables have a random character. Some 

disadvantage of the integral of squared error consists in that the control process 

is too oscillating.  

For the control error transform 
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 (4.10) 

can be computed:  
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For higher degree n the formulas are very complex.  

ITAE criterion 

min d)(
0

 


ttetI ITAE  (4.14) 

The ITAE criterion IITAE (ITAE = Integral of Time multiplied by Absolute 

Error) contains the time and the error and therefore it simultaneously 

minimalizes both the settling time and the error. This integral criterion is very 

popular among technicians though its value can be determined generally by 

simulation.  

For the given control system type q and the characteristic polynomial N(s) 

with degree n so-called standard forms of the control system transfer functions 

were determined by simulation for minimum of the ITAE criterion. 

 

Below are shown the standard forms only for q = 1, n = 2 and 3: 
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The parameter a matches the time scales of the original system and its 

model in a standard form. From both transfer functions of the open-loop control 

system Go(s) it follows that they contain one integrating element, i.e. q = 1. 

Only the most important integral criteria were briefly described. By their 

minimization the optimal values of the adjustable controller parameters can be 

obtained. The minimization is generally done by simulation.  

The integral criteria IIAE and IITAE can be used for control performance 

comparison and assessment of the different control processes.  

Frequency Domain 

The frequency domain is also suitable for assessing the control 

performance. It is the most favorite for the control system designers. Most often 

three frequency transfer functions are used (Fig. 4.7):  

the frequency (closed-loop) control system transfer function 
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the frequency open-loop transfer function 

)(j)(j)(j 
PCo
GGG   (4.18) 

the frequency disturbance transfer function (for the disturbance in the plant 

output) 
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Fig. 4.7 – Control system 

From the frequency control system transfer function (4.17) the modulus 

(magnitude) or logarithmic modulus (magnitude) can be obtained  

)(log20)(or)(j)(jmod)(  wywywywywy ALGGA   (4.20) 

The typical course of the magnitude response of the control system Awy(ω) 

is in Fig. 4.8. From Fig. 4.8 the following control performance indices can be 

get: Awy(ωR) – the peak resonance (resonant magnitude), ωR – the resonant 

angular frequency, ωm – the cutoff angular frequency. 
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For the well-tuned control system the relations  

dB)8.0()(or1.1)( 3.51.5  RwyRwy LA   (4.21) 

hold.  

A too high value of peak resonance gives high oscillation and a great 

overshoot.  

The cutoff angular frequency ωm determines the operating bandwidth, 

i.e. the region of the operating angular frequencies. Its higher value enables 

the control system to better process higher angular frequencies. The cutoff 

angular frequency ωm is given by a decrease of the modulus Awy(ω) [Lwy(ω)] on 

the value )0(707.0)0(
2

1
wywy
AA   [Lwy(0) = – 3 dB] and for the big peak 

resonance Awy(ωR) by increasing the modulus Awy(ω) [Lwy(ω)] to the value 

)0(414.1)0(2
wywy
AA   dB]3   )0([ wyL . 

 

Fig. 4.8 – Magnitude response of a control system 

On the basis of the magnitude response of the control system Awy(ω) the 

control system type q can be determined because relations  

10)0(or 1)0(  qLA wywy  (4.22a) 

00)0(or1)0(  qLA wywy  (4.22b) 

hold. 
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The control system type q can be determined on the basis of the frequency 

response of the open-loop control system Go(jω) for ω → 0, see Figs 3.12 ÷ 

3.14 and also Fig. 4.10.  

The frequency response of the open-loop control system Go(jω) is very 

useful because it enables pointing out very important control performance 

indices like the gain margin mA and the phase margin γ, see Figs 3.14 and 4.10. 

For common control systems there are recommended following values: 

dB)14(log20or5  62 ALA mmm  (4.23a) 
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The bold values should not be exceeded.  

The frequency transfer functions Gwy(jω) and Gvy(jω) [see Fig. 4.8 and 

relations (4.17), (4.19)] have the fundamental meaning for the theory of 

automatic control and therefore they are specially inscribed by symbols Gwy(jω) 

= T(jω) and Gvy(jω) = S(jω) and they have special names. From the relation 

(4.19) it follows  

1)(j)(j1)(j)(j   STGG vywy  (4.24) 

The S(jω) is called the sensitivity function and the T(jω) is the 

complementary sensitivity function.  

The name of the S(jω) “sensitivity function” follows from the next 

considerations.  

From  

)(j)(j)(j  WGY wy  (4.25) 

for W(jω) = constant the relation  
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is obtained, i.e. the relative change of the controlled variable (its transform) is 

equal to the relative change of the control system behavior (its transfer 

function). Similarly on the basis of (4.17) the relation  
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can be obtained, which expresses the influence of the relative changes of the 

controller and the plant behaviors (their transfer functions) on the relative 

change of the control system (its transfer function), and hence on a relative 

change of the controlled variable (its transform). It is obvious that this influence 

expresses just the sensitivity function S(jω). For its small value the influence of 

the relative changes of the controller and plant behaviors on the behavior of the 

control system and therefore on the controlled variable will be small too. 

It has a small value if the relations (3.15) or (3.16) hold. 

The sensitivity function S(jω) then expresses the sensitivity of the control 

system to small unspecified changes of the control system elements, first of all 

the plant. 

 

Fig. 4.9 – Course of the modulus of the sensitivity function  

In Fig. 4.9 the typical course of the modulus of the sensitivity function 

)(jmod)(j  SS   is shown. The scale of the angular frequency ω is often 

logarithmic.  

The maximum value of the sensitivity function modulus  
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has a very important interpretation. 
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The inverted value of the maximum of the sensitivity function modulus 

1/MS is the shortest distance of the open-loop frequency response Go(jω) to the 

critical point -1 + j0, see Fig. 4.10.  

This value MS for a well-tuned control system should not be more than 2 

and it ought be in the interval  

2 SM3.1  (4.29) 
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Fig. 4.10 – Geometrical interpretation of the maximum of the sensitivity 

function modulus  

The estimations follow from Fig. 4.10 – the gain margin 
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 (4.30) 

and the phase margin  

SM2

1
arcsin2  (4.31) 

The maximum of the sensitivity function modulus MS is the complex 

control performance index because from the relation (4.30) and (4.31) it follows 

that for MS ≤ 2 it ensures the gain margin mA ≥ 2 and the phase margin γ > 29 °. 

The reversed statement doesn’t hold, i.e. the values mA and γ don’t ensure the 

corresponding value MS. 

The sensitivity of the control system is related to its robustness. The 

robustness of the control system is its ability to hold the control objective for the 

given changes mostly of the plant (or other control system elements) behavior. 
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The control performance can go down in the determined range but the control 

system stability must be always ensured.  

S-domain 

The control system pole placement, i.e. the control system transfer function 

Gwy(s) pole placement has a principal influence on control performance. The 

influence the control system transfer function Gwy(s) pole placement on control 

system behavior is shown in Fig. 3.8. It is supposed that the control system is 

stable, i.e. all its poles lie in the left half of the s-complex plane. The influence 

on dynamic behavior is best seen on the second order oscillating system with the 

transfer function  
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Fig. 4.11 – Geometrical interpretation of the second order oscillating system 

parameters  

and the step response  
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Fig. 4.12 – Influence of complex conjugate poles of the second order oscillating 

system on its step responses  
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The geometrical interpretation of the second order oscillating system 

parameters is shown in Fig. 4.11 and the influence of the second order 

oscillating system poles on its step responses is in Fig. 4.12. Some of these 

parameters have special names: ω0 is the natural angular frequency, ω – the 

damped angular frequency, ωR – the resonant angular frequency, ξ0 – the 

damping ratio, α – the stability degree (damping). The dimension of the 

stability degree α (α > 0) is [time
-1

]
 
 in contrast to the dimensionless damping 

ratio ξ0 and expresses the distance of the couple poles from the imaginary axis. 

It indicates the exponential fall rate of the step response h(t), i.e. the exponential 

approaching the steady state h(∞) [see relation (4.33) and Fig. 4.12]. 

The meaning of the stability degree α is shown for the first order plant (Fig. 

4.13a) and for the second order (Fig. 4.13b). From both figures it is obvious that 

for the higher stability degree, α the settling time tr is shorter.  

The damping ratio ξ0 determines the relative overshoot κ (Fig. 4.12). Two 

half lines correspond to the constant damping ratio ξ0, which make the negative 

real axis the angle φ [the complex roots (poles) always rise in the complex 

conjugate couples]. 

Then it is obvious that on the basis of the control performance 

requirements, which are expressed for the given control system by the 

maximum settling time tr and the maximum relative overshoot κ it is possible to 

determine the admissible region in the left half of the s-complex plane in that 

the all control system poles must lie, see Fig. 4.14. The poles lying the closest to 

the admissible region boundary are called the dominant poles (sometimes as 

the dominant poles are thought the ones which are the closest to the imaginary 

axis). Furthermore, it is supposed that the poles lying far from the admissible 

region boundary have a negligible influence on control system behavior.  

The admissible region boundary in Fig. 4.14 is determined by the relations  

r

w
t

1
)53(   (4.34) 

ww  arccos  (4.35) 

In the case of the one dominant pole the smaller number in (4.34) is 

considered and in case of the double dominant pole there is considered the 

greater number. The first relation is given for the control tolerance at about 5 %. 

From the second relation for the maximum relative overshoot 25.0  it is 

possible to get 

 66404.025.0 0 w rad)15.1(  
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a) 

     

b) 

     

Fig. 4.13 – Influence of stability degree (damping) on the step response and 

settling time for a non-oscillating system of: a) the first order, b) the second 

order  
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Fig. 4.14 – Determination of admissible region for control system poles  

4.2 Controller Tuning 

The synthesis belongs to the most important procedures in control system 

design. It consists of the choice of the suitable controller type and its subsequent 

tuning from the point of view of given control performance requirements. A rise 

of the steady state errors is mostly undesirable and therefore the control system 

type q = 1 is mostly chosen. The higher control system type q ensures the 

zeroness of the steady state errors but it simultaneously increases a disposition 

for control system instability and makes it difficult for controller tuning. The 

control system type q = 0 can be used only for very simple control systems with 

a desired low control performance. In the case of control systems with a time 

delay, the steady-state errors would be inadmissibly great. Generally it holds 

that the controller with more components (terms) gives the better control 

performance.  

The task of the controller consists in the fulfillment of the control objective 

(3.2) [or (3.8)] with the desired control performance. It was shown in subchapter 

3.1 that it is possible in the case of fulfillment of the conditions (3.15) or (3.16) 

of course for a sufficient stable control system. All these conditions can hold by 

choosing the corresponding controller and its suitable tuning.  

The conditions (3.15) or (3.16) are very important because their fulfillment 

ensures the low value of the sensitivity function S(jω) [see (4.27)] and therefore 

the small influence of the relative controller and plant behaviors changes on the 

relative controlled variable changes.  

It is important that for the “smooth” extreme (i.e. minimum or maximum) 

the small changes of the parameters on which it depends have little influence on 

its optimal value (the gradient for the smooth extreme is zero), see Fig. 4.15. 

This figure shows the dependency of the chosen performance index (criterion) I 

on the controller gain KP. Therefore it is useful to have the values of the 
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adjustable controller parameters for the given performance index (criterion) 

determined by optimization.  

 

Fig. 4.15 – Dependence of performance index I on controller gain KP 

From all these arguments it follows that appropriate attention must be 

given to the controller choice and its tuning for the “nominal” (i.e. given or 

identified) plant.  

Conventional controller tuning methods are experimental, analytical and 

combined.  

Experimental methods „trial and error” 

The „trial and error” methods belong to the basic experimental methods. 

These methods are often used in practice because they operate with a real (true) 

closed-loop control system and therefore they don’t demand in principle any 

knowledge about plant behavior. These methods are applied on the existing 

control systems, which must be fine-tuned or tuned after redesign or repair.  

From the many existing “trial and error” methods there will be described 

only one method which is simple and effective.  

Procedure: 

1. All connection of the control system and the functionality of its devices 

must be checked.  

2. The desired variable (setpoint) value w(t) is set and in the manual mode 

yw(t) ≈ w(t) is set too, the integral and the derivative components shut 

down (i.e. TI → ∞ and TD → 0), the controller gain KP is decreased and 

the controller is switched to the automatic mode. 

  

Conservative  

tuning 

0 

Optimal tuning 

Aggressive 

tuning 

Increasing of oscillating 

*
I  

*
PK  

PK  

)( PKI  

0
d

d


PK

I
 



80 

3. The controller gain KP is subsequently increased so as the desired step 

response yw(t) is obtained (the steady-state error doesn’t matter). 

4. The controller gain KP is decreased on the 3/4 of the previous value and 

the integral time TI is slowly decreased so as the possible steady state-

error is removed and the desired step response yw(t) is obtained. It is often 

suitable that this step response is marginally non-oscillating.  

5. The final desired step response yw(t) is obtained by  fine-tuning. 

6. In the case of using the derivative component (term) the derivative time 

TD is set to value 1/10 TI. If noises arise or the manipulated variable u(t) is 

too active then using the derivative component isn’t proper and it is shut 

down. If by using the derivative component the control performance is 

better than the derivative time TD rises to the value 1/4 TI, the controller 

gain KP rises about 1/4 of the previous value (i.e. the value obtained in 

step 5) and the integral time TI decreases about 1/3 of the previous value 

(i.e. the value obtained in step 4).  

 

The described tuning procedure is simply and easy to use.  

Experimental Ziegler – Nichols methods 

The experimental Ziegler – Nichols methods belong among classical 

experimental controller tuning methods. They are suitable for preliminary 

tuning of the conventional controllers because they mostly give a big overshoot 

in the range from 10 % to 60 %, at average for different plants around 25 % (the 

quarter-decay criterion), see Figs 4.16 and 4.18.  

For the PID controller the constant ratio  

4

1
*

*


I

D

T

T
 (4.36) 

is very interesting.  

The controller tuning by the experimental Ziegler – Nichols methods is 

suitable in cases when the disturbance variable v(t) influences the plant input.  

Further two original Ziegler – Nichols methods and the one modification 

which derives from them are described.  

Open-loop method 

The open-loop method (the step response method) comes from the step 

response of the plant. The time delay Tu, the time constant Tn and the plant gain 

k1 are determined in accordance with Fig. 3.6a and on the basis of Tab. 4.1 the 

values of the adjustable controller parameters are computed.  
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Fig. 4.16 – „Average“ step response of control system tuned by experimental 

Ziegler – Nichols methods 

Tab. 4.1 – Values of adjustable controller parameters for Ziegler – Nichols 

open-loop method 

Controller 
*

P
K  *

IT  
*
DT  

P 
u

n

Tk

T

1  
– – 

PI 
u

n

Tk

T

1

9.0  
u
T33.3  – 

PID 
u

n

Tk

T

1

2.1  uT2  u
T5.0  

 

The destabilizing influence of the integral component of the PI controller 

evokes decreasing the controller gain *

P
K  in comparison with the P controller 

and the stabilizing influence of the derivative component of the PID controller 

evokes increasing the controller gain *

P
K  (compare Tab.4.1 with Tab. 4.2).  

The PID controller transfer function  
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 (4.37) 

is interesting. It shows that the PID controller tuned by the Ziegler – Nichols 

open-loop method has the double zero z2 = ‒ 1/Tu.  

Procedure: 

1. From the plant step response the plant gain k1 and the times Tu and Tn are 

determined (see subchapter 3.2, Fig. 3.6). 
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2. On the basis of Tab. 4.1 for a chosen controller the values of its adjustable 

parameters are computed. 

Closed-loop method  

The closed-loop method (the ultimate parameters method) comes from the 

real (true) closed-loop control system. The ultimate (critical) value of the 

controller gain KPc and the ultimate period Tc (Fig. 4.17) for the P controller are 

determined. Then on the basis of Tab. 4.2 the values of the adjustable controller 

parameters are computed.  

 

Fig. 4.17 – Determination of ultimate period Tc 

Tab. 4.2 – Values of adjustable controller parameters for the Ziegler – Nichols 

closed-loop method 

Controller 
*

P
K  *

IT  
*
DT  

P Pc
K5.0  – – 

PI Pc
K45.0  

c
T83.0  – 

PID Pc
K6.0  

c
T5.0  

c
T125.0  

 

The PID controller transfer function tuned by the closed-loop method has 

an interesting form too 
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 (4.38) 

From comparison of (4.37) and (4.38) it follows  



83 

uc

u

n
Pc TT

Tk

T
K 4,2

1

  (4.39) 

The relations (4.39) for Tu < Tn can be used for approximately determining 

the ultimate parameters KPc and Tc. 

From the first relation (4.39) and Tab. 4.2 it follows that both Ziegler – 

Nichols  methods in the case of the use the P controller have the same gain 

margin mA = 2, i.e. for doubly increasing the controller gain KP the control 

system reaches the oscillating stability boundary.  

The closed-loop method is applicable even for the I controllers. In this case 

the closed-loop control system is brought up on the stability boundary by 

decreasing the integral time TI. On the stability boundary the ultimate (critical) 

integral time TIc is determined and then for tuning the value  

IcI TT 2
*
  (4.40) 

is used. Even in this case the gain margin is the same mA = 2.  

If the non-oscillating control process is demanded then there is chosen 

IcI TT )64(
*

  (4.41) 

with the gain margin mA = 4 ÷ 6. 

The closed-loop Ziegler – Nichols method is useful above all because it 

doesn’t suppose any a priori knowledge of the plant behavior and that it operates 

with the real (true) plant and controller. Its basic disadvantage is that it must 

bring up the control system to stability boundary, i.e. the control system must 

oscillate which could cause damage to the plant or its non-linear behavior can 

arise.  

In case the plant doesn’t contain the time delay and its behavior is known 

then the ultimate parameters KPc and Tc or TIc can be obtained analytically by the 

use of the Mikhailov stability criterion (see subchapter 3.3).  

Procedure: 

1. and 2. the same steps like for the „trial and error” method. 

3. The controller gain KP is subsequently increased as for small change of 

the desired value w(t) the oscillating stability boundary arises. 

4. From the periodic course of any variable, the ultimate period Tc and 

from the P controller setting the ultimate gain KPc are determined. 

5. For the chosen controller on the basis of Tab. 4.2 the values of its 

adjustable parameters are computed. 
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Quarter-decay method 

The quarter-decay method is a specific modification of the closed-loop 

Ziegler – Nichols method. In contrast to it the quarter-decay method doesn’t 

suppose to bring up the control system to the oscillating stability boundary 

which enables operation in the linear region and use for more plants.  

 

Fig. 4.18 – Control system tuning by the quarter-decay method  

Tab. 4.3 – Values of adjustable controller parameters for the quarter-decay 

method  

Controller 
*

P
K  *

IT  
*
DT  

P 4/1P
K  – – 

PI 4/1
9.0

P
K  4/1T  – 

PID 4/1
2.1

P
K  

4/1
6.0 T  

4/1
15.0 T  

Procedure: 

1. and 2. the same steps like for the „trial and error” method. 

3. The controller gain KP is subsequently increased as the step response hw(t) 

holds that the ratio of the two consecutive amplitudes is equal to ¼, see 

Fig. 4.18. 

4. From the step response hw(t) the time T1/4 and from the P controller setting 

the controller gain KP1/4 are determined. 

5. For the chosen controller on the basis of Tab. 4.3 the values of its 

adjustable parameters are computed. 

 

„Universal“ experimental method 

The „universal” experimental method was elaborated in the former 

Soviet Union. It is supposed the plants with the transfer functions  
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Tab. 4.4 – Values of adjustable controller parameters for the „universal” 

experimental method – transfer function (4.42) 
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Control process 

Fastest response 

without overshoot 

Fastest response with 

overshoot 20 % 

Minimum  

of  ISE 

Controller 

type 

Tuning from point of view 

Desired 

variable 

w 

Disturbance 

variable v 

Desired 

variable 

w 

Disturbance 

variable v 

Disturbance 

variable v 

P 
*

P
K  

d
Tk

T

1

13.0  
d
Tk

T

1

13.0  
d
Tk

T

1

17.0  
d
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1

17.0  – 
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*

P
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d
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1
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IT  1T  d
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
 e)( 1  (4.43) 

The “universal” experimental method enables conventional controller 

tuning both from the point of view of the desired variable w(t) and from the 

point of view of the disturbance variable v(t) which acts on plant input for three 

control performance indices (criteria). These control performance indices are: 

the fastest response without overshoot, the fastest response with the relative 

overshoot κ = 0.2 (20 %) and the minimum of the integral of the squared error. 

This method, as with the control process without the overshoot, considers the 

control process with a maximum relative overshoot from 0.02 (2 %) to 0.05 (5 

%). 
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Tab. 4.5 – Values of adjustable controller parameters for the “universal” 

experimental method– transfer function (4.43) 

sTd
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k 
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Control process 

Fastest response 

without overshoot 

Fastest response with 

overshoot 20 % 

Minimum  

of  ISE 

Controller 

type 

Tuning from point of view 

Desired 

variable 

w 

Disturbance 

variable v 
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variable 

w 
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Disturbance 

variable v 

P 
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P
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T4.0  
d
T23.0  

d
T53.0  
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Procedure: 

1. The plant transfer function must be converted on one form (4.42) or 

(4.43) on the basis of the methods described in subchapter 3.2. 

2. On the basis of the control performance requirements the suitable 

controller, the kind of the control process (without an overshoot, with 

the relative overshoot κ = 0.2, minimum of ISE) and the purpose (the 

tuning from point of view of the desired w(t) or disturbance v(t) 

variables) are chosen based on Tab. 4.4 for the plant transfer function 

(4.42) or Tab. 4.5 for the plant transfer function (4.43) the values of the 

adjustable controller parameters are computed.  

Modulus optimum method  

The modulus optimum method belongs among the analytical controller 

tuning methods. It comes from desired condition for the modulus of the 

frequency control sytem transfer function [see (3.6)]  

1)(1)j(1)(   wywywy AGsG  (4.44) 

It is supposed that the desired course of the modulus Awy(ω) would be a 

monotone decreasing function in accordance with Fig. 4.19.  
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Fig. 4.19 – Desired course of the modulus of a frequency control system transfer 

function  

It is obvious that the relation 
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holds. 

It is important because it is easier to operate with the square power and 

further the equality  
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it is possible to write 
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where 
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If the equalities  
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hold and the numerator degree m will be equal to the denominator degree n in 

the transfer function (4.47) then the square of the modulus )(
2 wyA and therefore 

the modulus Awy(ω) would be independent from the angular frequency ω. From 

the point of view of the physical realizability the inequality n > m always holds 

in technical practice and therefore the independence on the angular frequency ω 

cannot be reached. The control process will be satisfactory if the square of the 

modulus )(
2 wyA  will be a monotone decreasing function with an increasing 

angular frequency ω, i.e.  

i

i
wy

A

B

A

B
A 

0

02
)0(  (4.51) 

When the modulus optimum method is used then the conditions (4.51) are 

used in the same number as there is the number of adjustable controller 

parameters p, i.e.  

piBABA ii ,,2,1,00   (4.52) 

For the control system with q = 1 (b0 = a0   B0 = A0) the equalities 

piBA ii ,,2,1,   (4.53) 

are used. 

Because the conditions (4.52) or (4.53) don’t consider all the characteristic 

polynomial coefficients  

01

1

1)( asasasasN
n

n

n

n 


   (4.54) 

arising in the denominator of the control system transfer function (4.47) the 

modulus optimum method generally doesn’t ensure the control system stability 

and so neither the desired control performance. It means that after using the 
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modulus optimum method the stability must be checked and the control 

performance would be preferably verified by simulation. 

If the plant transfer function GP(s) has some of the forms given in Tab. 4.6 

then for the recommended controllers and given values of the adjustable 

controller parameters (T = 0) the standard form of the control system transfer 

function  

iww

www

wy TT
sTsT

sG 2,
2

1
,

12

1
)(

22
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
 


 (4.55) 

is obtained, where the rows 1 and 2 in Tab. 4.6 i = 1, for the rows 3 and 4 i = 2 

and for the row 5 i = 3. 

Tab. 4.6 – Values of adjustable controller parameters for the modulus optimum 

method  

Plant 
Controller < 

analog 

digital 

T = 0 

T > 0 

Type 
*

P
K  *

IT  
*
DT  

1 
11
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sT

k

 
I –  TTk 5.02
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21


 – TT 5.0
1
  
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   111 321
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 sTsTsT
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321 TTT   

PID 
 TTk

T
I

5.02
31
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
 TTT  21  421

21 T

TT

TT


  

 

In this case it isn’t necessary to verify control system stability because the 

form (4.55) is the standard form for the ITAE criterion, see (4.15). 
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For controller tuning in accordance with Tab. 4.6 the time constant 

compensation was used. It consists in the mutual reduction one of the plant 

stable binomials by the one binomial of the PI or PD controllers or two of the 

plant stable binomials by the two binomials of the PID controller. The dynamics 

of the control system is simplified during the compensation but simultaneously 

the response slowdown can rise because the stable zeros of the numerator of the 

control system transfer function Gwy(s) can cause the response to accelerate.  

Tab. 4.6 can be used as well for the analog controller (T = 0) as for the 

digital controllers (T > 0), see Chapter 5. 

The modulus optimum method is used for q ≤ 1 first of all for the control 

of the electrical drives, where the small time constants (electrical) are 

substituted by the summary time constant, see subchapter 3.2.  

Procedure: 

1. The plant transfer function is converted to a suitable form in 

accordance with Tab. 4.6 and then for the recommended controller the 

values of its adjustable parameters are computed. 

2. If the plant transfer function cannot be converted to some of the forms 

in Tab. 4.6 or  another controller instead of the recommended controller 

is used then for the determination of the p adjustable parameters of the 

selected controller are for q = 0 computed from the relations (4.52) and 

for q = 1 from the relations (4.53). The time constant compensation can 

be used as well.  

3. In the case of another form than the standard form for the modulus 

optimum method (4.55) for control system stability it is necessary to 

verify if the control system is unstable (then the modulus optimum 

method cannot be used) and the control performance would be 

preferably verified by simulation. 

 

Desired model method  

The desired model method is a combined (analytical-experimental) 

controller tuning method, which comes from the desired model of the closed-

loop control system, i.e. from the desired control system transfer function  

sT

sT
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o

wy

d

dks

k

sW

sY
sG






 e
e)(

)(
)(  (4.56) 

where ko is the open-loop gain. 

It is very simple tuning method, which makes use of the time constant 

compensation and it ensures the control system type q = 1 (i.e. the zeros of the 

steady-state errors steps of the desired variable w(t) and the disturbance variable 
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v(t) in the plant input) and by a suitable choice of the open-loop gain and it 

makes it possible to ensure the desired relative overshoot κ in the range from 0 

to 0.5 (0 to 50 %). 

The dependency of the relative overshoot κ for some special values of the 

open-loop gain ko is shown in Fig. 4.20. 

 

Fig. 4.20 – Influence of open-loop gain ko on control system step responses  

Tab. 4.7 – Dependence of coefficients  and  on relative overshoot κ 

 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

 1.282 0.984 0.884 0.832 0.763 0.697 0.669 0.640 0.618 0.599 0.577 

 2.718 1.944 1.720 1.561 1.437 1.337 1.248 1.172 1.104 1.045 0.992 

 

The open-loop gain ko can be obtained analytically for the non-oscillating 

control process (
d

o
T

k
e

1
 ) and for the oscillating stability boundary (

d

o
T

k
2


 ). 

For the other values of the relative overshoot κ the dependency of the open-loop 

gain ko on the time delay Td was determined by the simulation (see Tab. 4.7) 

d

o
T

k


1
  (4.57) 

The suitable plant transfer functions for the desired model method are 

given in Tab. 4.8 together with the recommended controllers and values of their 

adjustable parameters.  
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The transfer function of the recommended controller GC(s) for some of the 

plants with the transfer function GP(s) for the desired control transfer function 

(4.56) can be obtained from the formula for direct synthesis  
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  (4.58) 

 

Tab. 4.8 – Values of adjustable controller parameters for the desired model 

method  

Plant 
Controller      < 

analog  T = 0 

digital    T > 0 

Type 

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
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E.g. for the plant with the transfer function 
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after substitution in (4.58) and considering (4.56) the controller transfer function  
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is obtained (see the row 2 in Tab. 4.8 for T = 0), where 
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1
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or after considering (4.57) 
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In a similar way for T = 0 the remaining rows were obtained in Tab. 4.8. 

Tabs 4.7 and 4.8 can be used for T > 0 also for the digital controllers, see 

Chapter 5.  

For a control system tuned by the desired model method the values of the 

most important control performance indices were computed, see Tab. 4.9.  

Tab. 4.9 – Values of the most important control performance indices  

κ 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

dRT  0 0.3 0.7 0.8 0.95 1.0 1.1 1.2 1.2 1.3 1.3 

)( RwyA   1 1.00 1.06 1.14 1.25 1.37 1.51 1.68 1.88 2.10 2.37 

Lwy(ωR) 

[dB] 
0 0.02 0.47 1.15 1.92 2.72 3.59 4.50 5.47 6.46 7.51 

SM  1.4 1.6 1.7 1.9 2.0 2.1 2.3 2.5 2.67 2.9 3.2 

γ [°] 69 60 57 53 50 47 44 41 38 35 32 

Am  4.3 3.0 2.7 2.5 2.3 2.1 2.0 1.8 1.7 1.6 1.6 

mL [dB] 12.6 9.7 8.6 7.8 7.1 6.4 5.85 5.3 4.8 4.3 3.9 

 

From Tab. 4.9 it follows that for control systems with the analog 

controllers tuned by the desired model method for the relative overshoot κ ≤ 0.2 

(20 %) the values of all the most important control performance indices satisfy 

the recommendations for well-tuned control systems. Therefore after using the 

desired model method for κ ≤ 0.2 it can be expected that besides the desired 

control performance the high control system robustness will hold. 

From Tab. 4.9 the conclusion follows that because the product of the 

resonant angular frequency ωR and the time delay Td is for the given relative 

overshoot κ constant, it is obvious that the time delay Td strongly restricts the 

range of the operating angular frequencies. 

Procedure: 

1. The plant transfer function is converted to a suitable form in accordance 

with Tab. 4.8.  

2. For the desired relative overshoot κ from Tab. 4.7 the coefficient β is 

chosen and on the basis of Tab. 4.8 for the recommended controller and 

for T = 0 the values of its adjustable parameters are computed.  
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SIMC method 

The SIMC method comes from the internal model control (IMC). Its 

author, Skogestad, recommends the abbreviation SIM to be understood as 

„SIMple Control“ or „Skogestad IMC“. 

For the determination of the controller transfer function the formula for 

direct synthesis [see (4.58)] 
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is used on the assumption that the control system transfer function has the form  
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where Tw is the time constant of the closed-loop control system.  

E.g. for the plant with the transfer function  
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After use of the approximation  

sTd
sTd 


1e  

from relation (4.61) the transfer function of the PI controller  
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


  

is obtained. 

By a suitable choice of the time constant Tw the different fast responses can 

be obtained. The time constant Tw can be considered as the tuning parameter. 

There is most often recommended Tw = Td and the integral time TI is determined 

on the basis of the relation  

)8,min( 1 dI TTT   

Then the values of the adjustable parameters of the PI controller are given 

(see rows 2 and 3 in Tab. 4.10) 
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In a similar way the remaining rows in Tab. 4.10 were obtained. 

The cases in the rows 2, 4 and 6 in Tab. 4.10 are equivalent to the desired 

model method for the relative overshoot κ ≈ 0.05 (5 %). 

 

Tab. 4.10 – Values of adjustable controller parameters for the SIMC method  

Plant 
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Procedure: 

1. The plant transfer function is converted to a suitable form in accordance 

with Tab. 4.10.  

2. For the recommended controller on the basis of Tab. 4.10 the values of 

its adjustable parameters are computed. 
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5 DIGITAL CONTROL 

 

This chapter is devoted to a brief description of the control systems with 

digital controllers. A simple approximate design method for digital controllers is 

shown. 

Lately digital controllers have most frequently been used in control 

engineering. It is caused by the recent development of digital technologies and 

simultaneously the decreasing of their prices. Conventional digital controllers 

mostly implement the same control algorithms, like analog ones but in discrete 

forms. Further in the text it is supposed that the quantization error is 

negligibly small and therefore the concept “digital” (discrete in magnitude and 

time) and “discrete” (discrete in time but continuous in magnitude) are 

equivalent. For example, the digital PID controller  
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 (5.1) 

,2,1,0k  

corresponds to the analog PID controller (3.19), where KP, KI and KD are the 

proportional, summation and difference component weights, T – the 

sampling period, kT – the discrete time. 

From the adjustable digital PID controller parameters it holds that 

T
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P
I  ,  (5.3) 

It is obvious that for the digital controllers the further adjustable parameter 

arises – the sampling period T. Its proper choice is very important from the point 

of view of control performance. The sampling period T increases the influence 

of the summation component (the summation component always destabilizes the 

control process) and decreases the influence of the difference component (the 

difference component stabilizes the control process), therefore the sampling 

period´s influence on the control performance and stability is always 

negative. Also, from this follows that between the sampling instants  

kT < t < (k + 1)T the digital controller hasn’t any information about the current 
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value of the control error e(t), see Fig. 5.1 and therefore it cannot perform and 

control well. 

 

Fig. 5.1 – Control error course in a control system with a digital controller  

The analog-to-digital (A/D) converter processes the conversion from the 

analog (continuous) variable to the digital (discrete) variable. It is often plugged 

in the feedback (Fig. 5.2). The output variable of the digital controller (DC) is 

the discrete control variable u(kT), which the digital-to-analog (D/A) converter 

converts to the continuous in the time control variable uT(t) with a staircase 

course (Fig. 5.3), which is the input variable of the plant (P). 

 

Fig. 5.2 – Control system with a digital controller  

 

Fig. 5.3 – Control variable courses in a control system with a digital controller  
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From Fig. 5.3 it follows that the staircase control variable uT(t) for the 

small sampling period T value can be substituted by smooth control variable 

u(t), which is delayed by half the sampling period, i.e. u(t – T/2). It is obvious 

that this substitution will be better for the smaller sampling period. Therefore for 

the approximate analysis and synthesis of the control system with the digital 

controller the substitute control system in Fig. 5.4 can be used. The digital 

controller is substituted by the analog controller of the corresponding type and 

the time delay is assigned to the plant. If methods not suitable for the time delay 

are used for analysis or synthesis then the time delay must be approximated by 

one of the following relations 
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 (5.5) 

The more accurate approximation is not used. The obtained results must be 

carefully interpreted with a sense of the approximate approach.  

 

Fig. 5.4 – Substitute control system with the digital controller 

The digital PID controller is the most complex conventional controller. In 

technical practice simpler digital controllers are used: 
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the digital I controller 
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and the digital P controller 

)()( kTeKkTu P  (5.9) 

The summation and difference components (terms) are often implemented 

using other different methods (the forward rectangular method, trapezoidal 

method etc.).  

For the suitable choice of the sampling period T these distinctions aren’t 

substantial and in addition the manufacturers very often don’t give any 

information about the summation and difference component implementation. 

For the digital difference component the input variable must be always 

suitably filtered.  

For choosing the sampling period T definite rules and recommendations 

don´t exist. For a rough choice the following recommendations can be used.  

Sampling period T  Plant (Process) 

(10 ÷ 500) μs the accurate control, the electrical and power 

systems, the accurate control robots 

(0.5 ÷ 20) ms the stabilization of the power systems, the flight 

and drive simulators 

(10 ÷ 100) ms image processing, virtual reality, artificial vision 

(0.5 ÷ 1) s  the control and monitoring of the processes, the 

chemical processes, the power systems  

(1 ÷ 3) s  flow control  

(1 ÷ 5) s  pressure control  

(5 ÷ 10) s  level control  

(10 ÷ 20) s  temperature control 

 

The more accurate determination of the sampling period comes from the 

behavior of the plant or a closed-loop control system. For example, for the 

proportional non-oscillating plant it is recommended that 

95.0
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15

1
tT 
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
  (5.10) 

where t0.95 is the time when the step response reaches 95 % of the steady-state 

value.  
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For the plant with the dominant time delay Td the relation 

dTT 







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3

1

8

1
 (5.11) 

is recommended. 

For digital controllers with the difference component the sampling period T 

must be chosen in accordance with the relation 

  DTT 5.01.0   (5.12) 

Some controller tuning methods are processed and derived also for the 

digital controllers (see Tab. 4.6 ÷ 4.8) and therefore they can be used directly.  
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6 TWO- AND THREE-POSITION CONTROL 

 

The chapter is devoted to the two- and tree-position control, which belongs 

among the simplest of control technologies.  

The two- and three-position (relay) control is widely and commonly 

used in home equipment and devices. Especially in every house, the two-

position (ON-OFF) control is used, e.g. for the electric iron temperature (see 

Fig. 1.3), water temperature and the level in the washing machine, the room 

temperature etc. 

The main reason of the use of the two- and three-position control is its very 

low price and relatively high reliability. 
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Fig. 6.1 – Different characteristics of a two-position controller: a) asymmetric 

without hysteresis (h = 0) and with hysteresis (h > 0), b) symmetric without 

hysteresis (h = 0) and with hysteresis (h > 0) 
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Fig. 6.2 – Characteristic of a symmetric three-position controller without 

hysteresis (h = 0) and with hysteresis (h > 0) 
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The two- and three-position controllers are strongly non-linear. Their 

characteristics are relay characteristics shown in Figs 6.1 and 6.2, where B is the 

relay amplitude, h – the hysteresis width, a – the dead zone. If the controller 

characteristic is without hysteresis (i.e. without memory) then it is the controller 

static characteristic. In the case of the controller characteristic with the 

hysteresis (i.e. with memory) this characteristic isn’t in an exact sense “static” 

and therefore it is just called the “characteristic”.  
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Fig. 6.3 – Control system with ON-OFF controller  
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Fig. 6.4 – Courses of controlled y(t) and control u(t) variables in control system 

with an ON-OFF controller 

Two-position controllers with the characteristic as in Fig. 6.1a very often 

operate in the mode “switch-on” and “switch-off” (e.g. the heating is on and the 

heating is off) and as Fig. 6.1b they operate in the mode “switch-on plus” and 
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“switch-on minus” (e.g. the heating is on and the cooling is on). The three-

position controllers in Fig. 6.2 are the two-position controller (in Fig. 6.1b) with 

extension of the third position “switch-off”. They often operate in mode 

“switch-on plus”, “switch-off” and “switch-on minus” (e.g. the heating is on, the 

heating and cooling are off and the cooling is on). The typical control system 

with the ON-OFF controller is in Fig. 6.3. Since both the originals of the 

variables and their transforms stand out the variables are written without their 

arguments and in lower case letters. The operation of the control system in Fig. 

6.3 is following. It is supposed that at the beginning the controlled variable 

value is y(0) = ymin. Because e(0) > h/2 the control variable u(t) = B (the state: 

switch – ON) and therefore the initial course of the controlled variable y(t) is 

given by the relation (Fig. 6.4) 

0),(e1)()( 1

minmaxmin 


















tTtyyyty d

T

Tt d

  (6.1) 

After reaching the value 
2

)(
h

wty   the control variable u(t) = 0 (the 

state: switch – OFF), the controlled variable y(t) at first rises during the time 

delay Td and then it falls until it reaches the value 
2

)(
h

wty  , the control 

variable u(t) = B (the state: switch – ON), it further falls during the time delay Td 

and then it rises etc. The whole control process periodically repeats. Because the 

control system with the ON-OFF controller is strongly non-linear therefore the 

analytical description of the course of the controlled variable y(t) is relatively 

complicated. While its graphical construction is very easy and it follows directly 

from Fig. 6.4.  

For the well-designed control system with the ON-OFF controller the 

desired variable (set-point) value approximately holds  

2

minmax yy
w


  (6.2) 

If it is equal then the 100 % abundance of the actuator power is given and 

the average controlled variable value is yav = w. For the higher power abundance 

the inequality yav > w holds and for the smaller one the opposite inequality yav < 

w holds. In both the last cases the courses of the controlled variable y(t) are 

asymmetric. 

If the disturbance variables v1(t) and v2(t) influence the control system in 

Fig. 6.3 they cause the controlled variable y(t) to fall under value 
2

h
w  , the 

control variable u(t) = B (the state: switch – ON), the controlled variable y(t) 
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after the time delay Td begins to rise and again the periodical control process 

arises.  

It is obvious that if the control error e(t) arises [it doesn’t matter whether it 

was caused by the desired w(t) or disturbance v1(t) and v2(t) variables or by the 

plant behavior change] then the ON-OFF controller makes efforts to remove it 

by the maximum value of the control variable, i.e. umax = B or umin = 0. 

Therefore if the ON-OFF control is applicable then it is highly robust.  

The applicability of the ON-OFF control decides the obtained control 

performance. It is given by the oscillation band width Δy of the controlled 

variable, which can be determined on the basis of the relations (see Fig. 6.4) 
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After using of the approximation  

0and1e
11

1 


T

T
h

T

T ddT

Td

 

the last relation in (6.3) can be simplified  

h
T

T
yyy d 

1

minmax )(Δ  (6.4) 

From the approximate formula (6.4) it is obvious that both the hysteresis 

width h and the time delay Td have a negative influence on the oscillation band 

width Δy. The time delay Td can be sometimes decreased by the suitably placed 

sensor but it is mostly given by the plant behavior and therefore it cannot be 

decreased.  

The time delay Td is the greatest enemy of the ON-OFF control (anywhere 

in the control) and therefore it demands  

2.0
n

u

T

T
 (6.5) 

would hold (in order to fulfil the condition Tu = Td = Td1, Tn = T1, see Fig. 3.6a).  
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Therefore if the desired control performance isn’t reached for h = 0, then 

the ON-OFF controller cannot be used.  

From a practical point of view the oscillating period Ty is very important 

because its inverse value  

y

y
T

f
1

  (6.6) 

expresses the switching frequency (i.e. number of switch-on or switch-off) per 

time unit. The switching frequency fy has a direct influence on the lifetime of the 

controller or actuator. From the Fig. 6.4, it follows that the oscillating period Ty 

will be greater if the time delay Td and the hysteresis width h will be greater. It 

is obvious that these requirements on the minimal oscillation band width Δy and 

the maximal oscillation period Ty are contradictory to each other and therefore it 

is necessary to choose a compromise solution.  

For the electronic two-position controller the oscillation period Ty can be 

increased by the adjustable dwell time.  

It is obvious that all considerations can be applied to a two-position 

symmetric controller (Fig. 6.1b) for ymin = – k1B.  

The two-position symmetric controller (Fig. 6.1b) is sometimes used 

together with the integrating device (most frequently with the electric drive). Its 

disadvantage is the continuous switching, therefore the use of the three-position 

controller (Fig. 6.2) is more suitable in accordance with Fig. 6.5. This 

connection is often used for the actuator (valve) setting.  

ue

s

k1

 

Fig. 6.5 – Three-position controller with integrating device 

The great oscillating band width Δy for the two- and three-position 

controllers can be decreased by the dynamic feedback, see Fig. 6.6. For both 

interconnections in Fig. 6.6 the two- or three-position controller can be 

approximately substituted by the gain kn → ∞ and then holds 
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where GFB(s) is the feedback transfer function. 
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Fig. 6.6 – Two- and three-position controller with dynamic feedback 

It is obvious that the two- or three-position controller with a dynamic 

feedback approximately implements the inversion of the feedback, i.e. (6.7).  

For example, for  
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can be obtained. 

Similarly for 

1
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
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the approximate PI controller  
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is obtained and for  
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
  



108 

 

the approximate PIDi (with the interaction) controller is implemented [see 

(3.24)] 

21

1 ,,

)1)(
1

1(
)(

)(
)(

FBDFBI

FB

FB

P

D

I

PC

TTTT
k

T
k

sT
sT

k
sE

sU
sG








 (6.10) 

The PI step controller is obtained for interconnection in accordance with 

Fig. 6.7. Its transfer function is approximately given  
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 (6.11) 
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Fig. 6.7 – PI step controller  
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7 CONCLUSION 

 

After reading this book every control engineering student is now able to 

understand what the control objective is, why negative feedback is important, when 

open loop control can be used, and the four main principles for every general 

system: the analysis, synthesis, identification and control. 

In order to be able to see the behavior of systems when they respond to signals 

on their inputs, the tools for modeling them and methods for visualizing the output 

results are presented. 

The analysis part starts with the role of controllers and their influence on the 

stability of systems as well as methods on how to check them for that. The 

synthesis part continues with a detailed look into controller tuning methods and 

procedures, both for analog and digital control, so our reader can decide what is 

more suitable, when, and under which conditions. A special chapter is devoted to 

two- and three-position (relay) control, since it is widely and commonly used in 

home equipment and devices. 

For deeper study and a wider view, it is possible to use the recommended 

references.  
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1 LAPLACE TRANSFORM - BASIC RELATIONS AND 
PROPERTIES 

 Definition formulas 
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 Integral value 
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2 LAPLACE TRANSFORM - CORRESPONDENCES 
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Transform X(s) Original x(t) 
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 Transform X(s) Original x(t) 

28 
  

21

21
2

1
,

11

1
TT

sTsTs

sb






 

   

2

2

1

1

12

212
2

12

111
1

1210210

1
,

1
,,

,ee 21

TTTT

TbT
C

TT

TTb
C

bTTCCCCt
tt



















 

29 
  different

,3,2
,

1
1








i

n

i
i

T

n

sT

s 

 
  i

in

ikk

ki

n
i

i

n

i

t
i

TTT

T
CC i

1
,,e

,1

3

1
















 

 

30 
  different

,3,2
,

1

1

1








i

n

i
i

T

n

sT



   i

in

ikk

ki

n
i

i

n

i

t
i

TTT

T
CC i

1
,,e

,1

2

1
















 

 

31 
  different

,3,2
,

1

1

1








i

n

i
i

T

n

sTs



   i

in

ikk

ki

n
i

i

n

i

t
i

TTT

T
CC i

1
,,e1

,1

1

1
















 

 

32 
  different

,3,2
,

1

1

1

2 






i

n

i
i

T

n

sTs



 

i

i

n

i

t
i

T
CCt i

1
,e

1

0  


   

 


 








n

i

in

ikk

ki

n
i

i TC

TT

T
C

1

0

,1

,

 

33 
22 



s
 tsin  

34 
22 s

s
 tcos  

35 

10

,
12

0

00
22

0







 sTsT

s

 

 












arctg,1
1

,
1

,sine

2
0

0

0

0

3
0

11






T

TT
CtC

t

 

36 

10

,
12

1

0

00
22

0







 sTsT

 

2
0

00

0

2
0

11 1
1

,,
1

,sine 










TTT
CtC

t

 

37  
10

,
12

1

0

00
22

0







 sTsTs

 

 












arctg,1
1

,
1

,sine1

2
0

0

0

0

0

11






T

TT
CtC

t

 

38  
10

,
12

1

0

00
22

0
2







 sTsTs

 

 













arctg,1
1

,,
1

2,2sine

2
0

00

0
1

2
00010






TT
C

TCtCCt
t

 



117 

 

 Transform X(s) Original x(t) 
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b1, b2 – the real constants,   Ti > 0, i = 0, 1,... 
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